
ABC

TET PDF IFilter
Version 5.5

Enterprise PDF Search for Windows



Copyright © 2002–2023 PDFlib GmbH. All rights reserved.
Protected by European and U.S. patents.

PDFlib GmbH
Franziska-Bilek-Weg 9, 80339 München, Germany
www.pdflib.com

sales@pdflib.com
support@pdflib.com (please include your license number)

This publication and the information herein is furnished as is, is subject to change without notice, and 
should not be construed as a commitment by PDFlib GmbH. PDFlib GmbH assumes no responsibility or lia-
bility for any errors or inaccuracies, makes no warranty of any kind (express, implied or statutory) with re-
spect to this publication, and expressly disclaims any and all warranties of merchantability, fitness for par-
ticular purposes and noninfringement of third party rights.

TET PDF IFilter contains the following third-party components:

Adobe CMap resources, Copyright © 1990-2019 Adobe
AES, Arcfour and SHA algorithms, Copyright © 1995-1998 Eric Young
Brotli decompression code, Copyright © 2009, 2010, 2013-2016 by the Brotli Authors
Expat XML parser, Copyright © 2001-2022 Expat maintainers
ICClib, Copyright © 1997-2002 Graeme W. Gill
ICU International Components for Unicode, Copyright © 1991-2020 Unicode, Inc.
libjpeg, Copyright © 1991-2019, Thomas G. Lane, Guido Vollbeding
MD5 message digest, Copyright © 1991-2, RSA Data Security, Inc.
OpenJPEG library, Copyright © 2002-2014, Université catholique de Louvain (UCL), Belgium
WOFF2 font decompression, Copyright © 2013-2017 by the WOFF2 Authors
Zlib compression library, Copyright © 1995-2022 Jean-loup Gailly and Mark Adler
Compact Language Detection, Copyright © 2010 The Chromium Authors.

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com


  3

0 Installing TET PDF IFilter 5

1 Getting Started 7
1.1 Windows Search 7

1.1.1 Configuration 7
1.1.1 Interactive Search 8
1.1.2 Programmatic Search 11

1.2 SharePoint 14

1.3 Exchange Server 15

1.4 SQL Server 16

2 Indexing Metadata Properties 19
2.1 Sources of Metadata in PDF 19

2.2 Metadata Organization 21

2.3 Predefined Properties 22

2.4 Examples with Predefined Properties 23

2.5 Custom Properties 24

2.6 Examples with Custom Properties 27

2.7 Index Properties as Text 32

2.8 Ignore Page Contents in Favor of Properties 34

3 Metadata Properties in IFilter Clients 35
3.1 Metadata Properties in Windows Search 35

3.1.1 Predefined Properties 35
3.1.2 Custom Properties 35
3.1.3 Properties in TET PDF IFilter 38

3.2 Metadata Properties in SharePoint 39

3.3 Metadata Properties in SQL Server 44

4 Advanced PDF Indexing 45
4.1 PDF Versions and Protected Documents 45

4.2 PDF Document Domains 47

4.3 Automatic Language Detection 52

4.4 Unicode Postprocessing 55

4.5 Custom Glyph Mapping Tables 58

5 XML Configuration File 59
5.1 Working with Configuration Files 59

5.2 XML Elements and Attributes 61

5.3 Sample Configuration File 66



4 Chapter :  

6 Troubleshooting 67
6.1 TET PDF IFilter does not work at all 67

6.2 Problems with TET PDF IFilter Operation 69

6.3 PDF Documents are not completely indexed 70

6.4 Debugging Facilities 71

A Predefined Metadata Properties 75

B Revision History 81



  5

0 Installing TET PDF IFilter
TET PDF IFilter is delivered as an installer for Windows systems. All TET PDF IFilter pack-
ages contain a signed IFilter DLL plus support files, documentation, and samples. Run-
ning the installer requires administrator privileges. The installer installs and registers 
TET PDF IFilter. Additional steps for specific search environments (e.g. Windows Search, 
SharePoint) as well as custom configuration are discussed in this manual.

32-bit and 64-bit versions. TET PDF IFilter is available for 32-bit and 64-bit platforms. 
Both versions are available in separate installers, and can be installed on the same sys-
tem in parallel if required. The 64-bit version is a native 64-bit implementation which 
works only with 64-bit executables. While the 64-bit installer refuses to install on 32-bit 
systems, the 32-bit version works on both 32-bit and 64-bit systems.

It is crucial to install the appropriate 32- or 64-bit version which matches the intend-
ed IFilter client software. For current server software this will usually be the 64-bit ver-
sion.

Updating to a newer version of TET PDF IFilter. If an older version of TET PDF IFilter is 
already installed on the machine, you should uninstall the older version before install-
ing the new version. Installation packages always contain the full product, and never 
rely on an existing installation.

Applying the TET PDF IFilter license key. Using TET PDF IFilter for production purposes 
on a server system requires a valid license key. Once you purchased a TET PDF IFilter li-
cense you must apply your license key in order to allow processing of arbitrarily large 
documents. Generally you enter the license key when installing TET PDF IFilter with the 
installer. However, you can also manually apply the license key in the registry after in-
stallation (see »Manual installation«, page 6). 32-bit and 64-bit versions accept the same 
license keys.

Use the license key 0 (zero) to install the evaluation version on a server system, or to 
install the free desktop version for non-commercial use.

Restrictions of the evaluation version. The TET PDF IFilter can be used as fully func-
tional evaluation version even without a commercial license. Unlicensed versions sup-
port all features, but process only PDF documents with up to 10 pages and 1 MB size. 
Evaluation versions of TET PDF IFilter must not be used for production purposes. Using 
TET PDF IFilter for production purposes requires a commercial license.

Free desktop version for non-commercial use. TET PDF IFilter for desktop systems, i.e. 
Windows 8/10 may freely be used for personal use, i.e. non-commercial purposes. De-
ploying the desktop version in any situation which can be considered commercial use 
requires a commercial license, though. TET PDF IFilter for Windows Server always re-
quires a commercial license.

Supported IFilter clients. TET PDF IFilter implements Microsoft’s IFilter interface. A 
variety of indexing products support the IFilter interface. In this documentation such 
products are called IFilter clients. TET PDF IFilter has been tested with the following 
products, but may also work with other Microsoft and third-party products which sup-
port the IFilter interface:



6 Chapter 0:  Installing TET PDF IFilter

> SharePoint 2013 and above
> SQL Server 2012 and above
> Exchange Server 2010 and above
> Windows Search is integrated in Windows 8/10

TET PDF IFilter is available in 32-bit and 64-bit versions. The 64-bit version of the IFilter 
works only with 64-bit versions of the products above.

Registration of XML configuration files and post-installation steps. The installer of-
fers an option for registering suitable XML configuration files for use with various IFil-
ter clients (Windows Search, SharePoint, etc.). If an IFilter client is selected, the corre-
sponding XML configuration file for TET PDF IFilter is added to the registry. In the case 
of Windows Search the predefined properties of TET PDF IFilter are registered (see Sec-
tion 3.1.2, »Custom Properties«, page 35).

Some IFilter clients may require additional steps after TET PDF IFilter has been in-
stalled. These steps are discussed in the respective sections in Chapter 1, »Getting Start-
ed«, page 7.

Manual installation. While the installer applies all steps required to use TET PDF IFil-
ter you may need to apply certain steps manually in some situations. Refer to the fol-
lowing information in this case.

To add the license key manually enter it at the following registry value:

HKEY_LOCAL_MACHINE\SOFTWARE\PDFlib\TET PDF IFilter5\license

To register the TET PDF IFilter DLL in the system (to make sure it will be found by IFilter 
clients) run the following command (possibly modified for a different installation di-
rectory) in a console window:

regsvr32 "C:\Program Files\PDFlib\TET PDF IFilter 5.5 64-bit\bin\TETPDFIFilter.dll"

Make sure to run this command from a command prompt with administrator privilege 
(see below).

If there are IFilter clients which are already using TET PDF IFilter, make sure to stop 
all related services which access TET PDF IFilter before registering the DLL again. Also, 
make sure that the Windows event log is closed.

Running privileged commands. Write access to the registry (e.g. by the regsvr32 and 
proptool programs) requires administrator privileges. You can launch a command 
prompt with administrator privileges as follows: click on Start, type cmd.exe into the 
search box, right-click the resulting cmd.exe entry, and select Run as administrator. This 
triggers the UAC prompt, and after confirmation a command prompt with administra-
tor privileges opens.



1.1  Windows Search 7

1 Getting Started
This chapter describes the initial steps required to configure and use some of the search 
and retrieval products (IFilter clients) supported by TET PDF IFilter. This description is 
intended to get you up and running with TET PDF IFilter. Advanced configuration as-
pects are discussed in Chapter 2, »Indexing Metadata Properties«, page 19.

In this chapter we assume that the appropriate 32- or 64-bit of TET PDF IFilter has 
been installed on the system.

1.1 Windows Search
1.1.1 Configuration

System requirements. Windows Search implements a property system for metadata 
which is supported by TET PDF IFilter. Windows Search is available for Windows 8/10 
and Windows Server 2012 and above. Note that Windows Search is disabled by default 
on Windows Server 2016 and above.

Setup and configuration. By default, Windows Search indexes documents in libraries 
(e.g. Documents) and offline files. You can instruct Windows Search to index documents 
in other locations (including network drives) as follows:

Fig. 1.1. 
Configuring Windows Search



8 Chapter 1:  Getting Started

> Click Start, Control Panel, Indexing Options.
On Windows 10 you can alternatively click into the search field of an Explorer Win-
dow (this activates the Search item in the menu bar) and then click Advanced options, 
Change indexed locations.

> Click Modify. In the Change selected locations section, choose the directories that you 
want to index and click OK.

> Click Advanced and Rebuild to force the documents to be indexed immediately.

Starting and stopping the Windows Search service. You can start and stop the search 
service (more precisely: the indexing process which in turn calls TET PDF IFilter) manu-
ally with the following methods:

> In a console window with administrator privileges type the following to start the ser-
vice:

net start wsearch

Type the following to stop the service:

net stop wsearch

> To control the service in the control panel:
Click on Start, Control Panel, Administrative Tools, Services and locate Windows Search in 
the list of available services. Double-click on the service name to bring up a dialog 
which offers Start/Stop and other controls.

> To rebuild the catalog:
Click Start, Control Panel, Indexing Options, Advanced and Rebuild
This will re-index all documents.

Note that Windows Search automatically starts the indexing service in certain situa-
tions.

1.1.1 Interactive Search

Content search. You can enter search terms in the search box near the top right corner 
of a Windows Explorer window

In addition to typing simple search terms you can use additional operators to nar-
row your search, using AQS (Advanced Query Syntax). A comprehensive description of 
AQS is available at

msdn.microsoft.com/en-us/library/windows/desktop/bb266512%28v=vs.85%29.aspx

The Boolean keywords AND, OR and NOT must be spelled in uppercase. They are not sub-
ject to localization, i.e. the English forms must be used regardless of the Windows UI lan-
guage. Table 1.1 contains examples of content searches.

Table 1.1 Searching content with Windows Search

query explanation

Hol document contents or any property contains words start-
ing with Hol

"Sherlock Holmes" document contents or any property contains the exact 
phrase Sherlock Holmes

https://msdn.microsoft.com/en-us/library/windows/desktop/bb266512%28v=vs.85%29.aspx


1.1  Windows Search 9

Properties in Windows Explorer. In addition to text searches you can search for meta-
data properties. You can display properties in an Explorer window via View, Add columns, 
Choose columns and selecting one or more additional properties. Now click View, Details 
to display the detailed file information. If a query is entered in the search box (even * or 
*.pdf will do) and a property value is available for a document the value is displayed in 
the new column (see Figure 1.2). New properties are not used in existing Explorer Win-
dows, but only in new Windows.

Canonical property name and localized display name. In addition to canonical names 
(e.g. System.Author) the localized display names or labels (e.g. Authors) can be used in 
queries depending on the Windows UI language. Recognized property names in a query 
are displayed in blue color in the search window.

In addition to the canonical property name (e.g. System.Author) Windows uses local-
ized display names (e.g. Author). If the display name contains space characters (e.g. Date 

Holmes AND Watson
Holmes + Watson
Holmes Watson
(Holmes Watson)

document contents or any property contains both Holmes 
and Watson

Holmes OR Watson document contents or any property contains either Holmes 
or Watson

Holmes NOT Mowgli
Holmes -Mowgli

document contents or any property contains the term 
Holmes, but not the term Mowgli

System.Search.Contents:nutshell text contents of the document contains nutshell; proper-
ties are ignored

Table 1.1 Searching content with Windows Search

query explanation

Fig. 1.2
Search results in Windows Explorer and additional columns with predefined properties



10 Chapter 1:  Getting Started

modified) these must be removed when querying with the property (datemodified). The 
display names are used as column headers in Explorer windows.

The canonical names and localized English display names of all shell properties sup-
ported in TET PDF IFilter are listed in Appendix A.1, »Shell Property Set Collection«. To 
determine other localized names of shell properties (e.g. German) you can use the 
proptool utility with the --list option:

proptool --list System.Author

The resulting output on a German system looks as follows:

System.Author Autoren F29F85E0-4FF9-1068-AB91-08002B27B3D9/4

Property queries. Table 1.2 contains examples of property queries. See Section 3.1, 
»Metadata Properties in Windows Search«, page 35, for advanced topics related to meta-
data queries and custom properties. Properties come from the following groups:

> Shell properties are defined by the Windows operating system. The canonical (lan-
guage-independent) Windows property names are listed at

msdn.microsoft.com/de-de/library/windows/desktop/dd561977%28v=vs.85%29.aspx

Some Windows shell properties are populated by TET PDF IFilter based on informa-
tion found in the PDF document, e.g. System.Document.PageCount and System.Key-
words. Table A.1 lists all shell properties which are emitted by TET PDF IFilter. This ta-
ble lists canonical names and localized English display names (labels).

> Additional predefined properties are supported by TET PDF IFilter. They are grouped 
in property sets and listed in Table A.2 to Table A.5. Section 2.3, »Predefined Proper-
ties«, page 22, discusses configuration of predefined properties.

> Custom properties are user-defined metadata properties which can be configured in 
TET PDF IFilter; see Section 2.5, »Custom Properties«, page 24.

Table 1.2 Searching properties with Windows Search; long form with canonical property name and short form 
with English label are shown

query explanation

search for Windows shell properties

System.Author:Doyle
Authors:Doyle

author contains Doyle

System.Author:"Conan Doyle"
Authors:"Conan Doyle"

author contains the words Conan Doyle

System.Author:Doy
Authors:Doy

author starts with Doy

System.DateModified:=2017-03-27
datemodified:=2017-03-27

modification date is March 03, 2017; the canonical date 
format works regardless of the Windows UI language

System.Document.DateCreated: = 2017-03-27
contentcreated: = 2017-03-27

creation date is March 03, 2017

System.Document.PageCount: >= 100
Pages: >= 100

document contains 100 or more pages

search for properties predefined in TET PDF IFilter

https://msdn.microsoft.com/de-de/library/windows/desktop/dd561977%28v=vs.85%29.aspx


1.1  Windows Search 11

1.1.2 Programmatic Search
In addition to interactive queries you can use the Advanced Query Syntax programmat-
ically. You can use SQL syntax extensions which present the search index through a da-
tabase-like programming interface.

SQL queries for metadata properties. SQL queries can search for predefined as well as 
custom properties. Some examples are provided below; they assume that indexing of 
all predefined properties has been enabled in the XML configuration file, and that the 
predefined_properties.propdesc property description has been registered. We use ADO 
(ActiveX Data Objects) and PowerShell scripts to submit SQL-based queries. However, you 
can use the SQL statements in any other ADO or ADO.NET environment as well. A de-
scription of the SQL syntax extensions for Windows search is available at

msdn.microsoft.com/en-us/library/bb231256(VS.85).aspx 

Property searches can be applied in two directions:
> Query a specific property value, e.g. which documents have Doyle as author?
> Query the value of a specific property in one or more files, e.g. who is the author of 

this document?

PowerShell for submitting SQL queries. Sample PowerShell query scripts are installed 
with TET PDF IFilter. Some hints if you are not familiar with PowerShell:

> In order to run unsigned PowerShell scripts you must apply the following command 
once as Administrator:

set-executionpolicy remotesigned

> Run a script, e.g. query_text_in_pdf.ps1 as follows in a PowerShell window:

& query_text_in_pdf.ps1

The following PowerShell script lists PDF/A conformance properties for all documents:

$objConnection = New-Object -comobject ADODB.Connection
$objRecordset = New-Object -comobject ADODB.Recordset
$objConnection.Open("Provider=Search.CollatorDSO;Extended 
Properties='Application=Windows';")

PDFlib.TET.pdfa:=PDF/A-2b
pdfa:=PDF/A-2b

document conforms to the PDF/A-2b flavor

PDFlib.TET.pdfa:~<PDF/A
pdfa:~<PDF/A

document conforms to any of PDF/A-1, PDF/A-2 or PDF/A-3

PDFlib.TET.producer:~=Microsoft
producer:~=Microsoft

document contains a Producer entry with the term 
Microsoft

PDFlib.TET.fullpdfversion: <170
fullpdfversion: <170

document conforms to a PDF version older than PDF 1.7

PDFlib.TET.font:=Calibri
font:=Calibri

document contains text with a font whose name starts 
with Calibri

Table 1.2 Searching properties with Windows Search; long form with canonical property name and short form 
with English label are shown

query explanation

http://msdn.microsoft.com/en-us/library/bb231256(VS.85).aspx


12 Chapter 1:  Getting Started

 
$objRecordSet.Open(
"SELECT System.ItemPathDisplay, `"PDFlib.TET.pdfa`" FROM SYSTEMINDEX ", $objConnection)

While ($objRecordset.EOF -ne $True) {
    $private:item = $objRecordset.Fields.Item("System.ItemPathDisplay")
    Write-Output $item.Value
    $item = $objRecordset.Fields.Item("PDFlib.TET.pdfa")
    Write-Output $item.Value 
    $objRecordset.MoveNext()
}

The following PowerShell script lists all documents where the PDF/A conformance con-
tains PDF/A-2:

$objConnection = New-Object -comobject ADODB.Connection
$objRecordset = New-Object -comobject ADODB.Recordset
$objConnection.Open("Provider=Search.CollatorDSO;Extended 
Properties='Application=Windows';")

$objRecordSet.Open("SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE " +
"`"PDFlib.TET.pdfa`" = SOME ARRAY ['PDF/A-2']", $objConnection)

While ($objRecordset.EOF -ne $True) {
    $private:item = $objRecordset.Fields.Item("System.ItemPathDisplay")
    Write-Output $item.Value 
    $objRecordset.MoveNext()
}

VBScript for submitting SQL queries. The following VBScript code lists all documents 
along with the name of the application which created the document. Unfortunately, 
only some shell properties can be used with VBScript queries; other properties cannot 
be queried:

On Error Resume Next

Set objConnection = CreateObject("ADODB.Connection")
Set objRecordSet = CreateObject("ADODB.Recordset")

objConnection.Open "Provider=Search.CollatorDSO;Extended 
Properties='Application=Windows';"

objRecordSet.Open "SELECT System.ItemPathDisplay, System.ApplicationName FROM 
SYSTEMINDEX", objConnection

objRecordSet.MoveFirst

Do Until objRecordset.EOF
    Wscript.Echo objRecordset.Fields.Item("System.ItemPathDisplay")
    Wscript.Echo objRecordset.Fields.Item("System.ApplicationName")
    Wscript.Echo ""
    objRecordset.MoveNext
Loop

Complex property queries with SQL. The following samples contain only the relevant 
SQL statement and can be used in any SQL environment. For using these statements in 
PowerShell scripts you must apply proper quoting, e.g. `"PDFlib.TET.pdfa`" instead of 



1.1  Windows Search 13

"PDFlib.TET.pdfa". Many examples below use array queries for vector properties (see Sec-
tion , »Multivalued properties«, page 26). Details on the syntax for array queries can be 
found at

msdn.microsoft.com/en-us/library/bb231264(VS.85).aspx 

> List all documents where the author contains Doyle:

SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE CONTAINS("System.Author", 
'Doyle')

> List all documents where the author starts with Rudy:

SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE CONTAINS("System.Author", 
'"Rudy*"')

> List all documents which conform to PDF/A-1a:

SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE "PDFlib.TET.pdfa" = 'PDF/A-
1:2005'

> List all documents containing at least one of the fonts Bembo and TimesNewRoman:

SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE "PDFlib.TET.font" = SOME ARRAY 
['Bembo', 'TimesNewRoman']

> List all documents containing both the Bembo and Bembo-Bold fonts:

SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE "PDFlib.TET.font" = SOME ARRAY 
['Bembo'] AND "PDFlib.TET.font" = SOME ARRAY ['Bembo-Bold']

> List all documents with at least one tennis image (Photoshop category TEN=tennis):

SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE 
"PDFlib.TET.images.photoshop.SupplementalCategories" = SOME ARRAY ['TEN']

> List all documents with a PDF version higher than 1.6 (the PDF version is returned by 
TET PDF IFilter as a string with the version number times ten, e.g. 16 for PDF 1.6):

SELECT System.ItemPathDisplay FROM SYSTEMINDEX WHERE "PDFlib.TET.pdfversion" > '16'

http://msdn.microsoft.com/en-us/library/bb231264(VS.85).aspx


14 Chapter 1:  Getting Started

1.2 SharePoint
System Requirements. TET PDF IFilter works with the following SharePoint configura-
tions:

> SharePoint Server 2016 and 2019
> SharePoint Server 2013 and SharePoint Foundation 2013; hotfix KB2883000 or July 8, 

2014 Cumulative Update for SharePoint Server 2013 is required.

Installation. Proceed as follows to configure TET PDF IFilter for use with SharePoint-
Server:

> Install TET PDF IFilter with the installer.
> Open a SharePoint Management Shell window and enter the following commands to 

enable TET PDF IFilter for PDF indexing:

$ssa = Get-SPEnterpriseSearchServiceApplication
Set-SPEnterpriseSearchFileFormatState -SearchApplication $ssa -Identity pdf 

-UseIFilter $true -Enable $true

> You can use the following command to check whether the previous command was 
successful:

Get-SPEnterpriseSearchFileFormat -SearchApplication $ssa -Identity pdf

The output of this command should look similar to the following (the entry UseIFilter 
should have the value True):

Identity   : pdf
Name       : PDF
MimeType   : application/pdf
Extension  : .pdf
BuiltIn    : True
Enabled    : True
UseIFilter : True

> Now restart the SharePoint search service:

net stop OSearch16 % for SharePoint 2013: net stop OSearch15
net stop SPSearchHostController
net start SPSearchHostController

Starting the SPSearchHostController service implicitly also starts the OSearch16 service.

Simple and advanced Text Search. Several methods are available for building search 
queries in SharePoint:

> Query keywords
> SQL queries
> Queries encoded in URLs

See Section 3.2, »Metadata Properties in SharePoint«, page 39, for metadata queries.



1.3  Exchange Server 15

1.3 Exchange Server
System requirements. TET PDF IFilter works with Microsoft Exchange Server 2010 and 
above.

Setup and configuration. Proceed as follows to configure TET PDF IFilter for use with 
Exchange Server:

> Install TET PDF IFilter with the installer.
> Apply the post-installation steps described below.

Post-installation steps. TET PDF IFilter must be registered for use with Microsoft Ex-
change Server by running the following PowerShell script with Administrator privileg-
es:

register_in_exchange_2010.ps1

This script is installed in the subdirectory IFilter clients\Exchange of the TET PDF IFilter 
installation directory. After the script was executed successfully the Microsoft  Exchange 
Search Indexer service must be restarted. Either perform this task from the Services con-
trol panel or from PowerShell on the command line:

stop-service MSExchangeSearch -Force
start-service MSExchangeSearch

The registration script must be executed again when a newer version of TET PDF IFilter 
is installed, as the default installation directory of TET PDF IFilter changes with an up-
date.

After TET PDF IFilter has been registered the PDF attachments of all new mails are in-
dexed by Exchange. In order to index PDF attachments of existing messages all mail-
boxes must be indexed again. The following article on the MSDN website describes the 
possible procedures for rebuilding the Exchange full-text index:
technet.microsoft.com/en-us/library/aa995966(v=EXCHG.80).aspx

http://technet.microsoft.com/en-us/library/aa995966(v=EXCHG.80).aspx


16 Chapter 1:  Getting Started

1.4 SQL Server
System requirements. TET PDF IFilter works with the following editions of SQL Server:

> SQL Server 2012 and above

More information about full-text search in SQL Server can be found at

msdn.microsoft.com/en-us/library/mt590198(v=sql.1).aspx 

Setup and configuration. In order to give you full control over the use of filters in SQL 
Server, the installer does not automatically register TET PDF IFilter in any instance of 
SQL Server. Instead, you must manually register TET PDF IFilter separately for all in-
stances of SQL Server.

The following steps instruct SQL Server to access IFilters which are installed system-
wide:

> Install TET PDF IFilter with the installer.
> Run SQL Server Management Studio and execute the following statements to make the 

system-wide document filters available to this instance of SQL Server (see 
msdn.microsoft.com/en-us/library/dd207002%28v=sql.120%29.aspx for details):

exec sp_fulltext_service 'load_os_resources', 1;
GO
exec sp_fulltext_service 'update_languages'
GO
exec sp_fulltext_service 'restart_all_fdhosts'
GO

Testing the configuration. You can check the configuration results to make sure that 
TET PDF IFilter is available for an instance of SQL Server. Use the following statements:

SELECT document_type, path FROM sys.fulltext_document_types WHERE document_type = '.pdf'

A resulting output line similar to the following indicates that TET PDF IFilter has suc-
cessfully been configured for the instance (the exact path depends on your installation 
path):

.pdf C:\Program Files\PDFlib\TET PDF IFilter 5.5 64-bit\bin\TETPDFIFilter.dll

Preparing a database table for full-text PDF indexing. TET PDF IFilter will be used by 
SQL Server for creating the full-text index for PDF documents stored in a column of type 
varbinary(max). Since the document type is not available in this situation, the file exten-
sion must be stored in a separate column in the table, the so-called type column. The 
type column can be of any character-based data type. We use VARCHAR(4) and store the 
file extension pdf.

The following statements create a DocumentTable containing a sample PDF docu-
ment in the data column, the file name in the name column, and the associated type in 
the extension column:

CREATE DATABASE TestDatabase
GO
USE TestDatabase
GO
CREATE TABLE DocumentTable

http://msdn.microsoft.com/en-us/library/mt590198(v=sql.1).aspx
http://msdn.microsoft.com/en-us/library/dd207002%28v=sql.120%29.aspx


1.4  SQL Server 17

(pk INT NOT NULL IDENTITY CONSTRAINT DocumentTablePK PRIMARY KEY,
data VARBINARY(MAX), name VARCHAR(100), extension VARCHAR(4))
GO
INSERT INTO DocumentTable(data, name, extension) SELECT *,'The_Hound_of_the_
Baskervilles.pdf','pdf' FROM OPENROWSET(BULK 'C:\PDF\The_Hound_of_the_Baskervilles.pdf', 
SINGLE_BLOB) AS Document
GO

Now you can create the full-text index:

sp_fulltext_database 'enable'
GO
CREATE FULLTEXT CATALOG TestCatalog AS DEFAULT
GO
CREATE FULLTEXT INDEX ON DocumentTable (data TYPE COLUMN extension)
KEY INDEX DocumentTablePK
GO

Dropping and recreating the full-text index. You can use the following statements to 
drop the full-text index:

USE TestDatabase
GO
DROP FULLTEXT INDEX ON DocumentTable
GO

Recreate the full-text index:

USE TestDatabase
CREATE FULLTEXT INDEX ON DocumentTable (data TYPE COLUMN extension)
KEY INDEX DocumentTablePK
GO

Simple and advanced text search. You can query for individual words in the full-text 
index:

SELECT name FROM DocumentTable WHERE CONTAINS(*, 'Watson')
GO

In order to search for a phrase consisting of multiple words enclose the phrase in double 
quotes:

SELECT name FROM DocumentTable WHERE CONTAINS(*,'"Arthur Conan Doyle"')
GO

A sample script for performing these steps with the supplied PDF samples is installed 
with TET PDF IFilter. More information about the CONTAINS predicate in Transact-SQL 
can be found at

msdn.microsoft.com/en-us/library/ms187787(SQL.100).aspx 

See Section 3.3, »Metadata Properties in SQL Server«, page 44, for metadata queries.

http://msdn.microsoft.com/en-us/library/ms187787(SQL.100).aspx




2.1  Sources of Metadata in PDF 19

2 Indexing Metadata Properties
In addition to the main text TET PDF IFilter can also feed a variety of metadata proper-
ties to the indexer. This allows powerful searches even if you are not looking for a par-
ticular text on the page.

2.1 Sources of Metadata in PDF
Most PDF documents contain document information entries, such as the Author and 
Title fields. In addition to document information entries PDF documents may contain 
XMP metadata. TET PDF IFilter supports indexing of several kinds of metadata in PDF 
documents.

Predefined and custom document info entries. Document information entries are 
considered the old and simple kind of PDF metadata. They can be displayed in Acrobat 
via File, Properties... . The PDF standard documents the following document info entries:

Title Author Subject Keywords Creator Producer CreationDate ModDate Trapped

In addition to these standard entries custom entries can be added to the set of docu-
ment info entries. They can be displayed and edited in Acrobat (but not Adobe Reader) 
via File, Properties..., Custom.

Both predefined and custom document info entries can be addressed with pCOS 
paths in TET PDF IFilter (see below).

XMP properties at the document and image level. XMP (Extensible Metadata Platform1) 
is a framework for metadata. XMP is required, for example, for PDF/A conformance, and 
is supported by many applications. XMP metadata is organized in schemas which con-
tain a number of properties. Properties are addressed using a namespace prefix and the 
property name.

XMP metadata is usually associated with the whole document. However, in PDF it is 
also possible to associate XMP with individual pages, images, or other objects. In prac-
tice this feature is mainly used for raster images. For example, a digital image may carry 
the name of the photographer, copyright notes, scene details and other information. An 
important source of image-related XMP metadata is Adobe Photoshop. If you create PDF 
from Photoshop or use Photoshop-created images in Adobe workflows, the XMP meta-
data is usually included in the PDF document and can be indexed with TET PDF IFilter.

The XMP specification includes a description of all predefined XMP schemas and prop-
erties.

XMP properties on the document or image level (as well as XMP associated with other 
objects) can be addressed in two steps: a pCOS path identifies the relevant PDF object, 
and a two-part XMP property name addresses the target XMP schema and property.

Extended pCOS paths. The pCOS (PDFlib Comprehensive Object Syntax) interface pro-
vides a simple and elegant facility for retrieving arbitrary information from all sections 
of a PDF document which do not describe page contents, such as page dimensions, 

1. See www.adobe.com/products/xmp 

http://www.adobe.com/products/xmp


20 Chapter 2:  Indexing Metadata Properties

metadata, interactive elements, etc. Examples for using the pCOS interface and a de-
scription of the pCOS path syntax are contained in the pCOS Path Reference which is 
available as a separate document. Additional examples can be found in the pCOS Cook-
book at www.pdflib.com/pcos-cookbook/.

pCOS can be used in TET PDF IFilter to address information about a document. pCOS 
paths represent some aspect of the PDF document such as bookmarks, font name, or 
page size, and can also address document info entries or XMP metadata streams (but 
not properties within an XMP stream). While the pCOS API functions are not available in 
TET PDF IFilter, you can supply pCOS paths as expressions in the XML configuration file 
in order to index information about a document

Table 2.1 lists the pCOS paths for some commonly used PDF objects. Many pCOS ob-
jects are represented by arrays which require an array index in angle brackets, e.g. 
pages[0] denotes the first page (pages are counted starting at 0). In addition to all pCOS 
paths supported by the TET product (which forms the basis of TET PDF IFilter), the IFilter 
supports the following syntax extension for pCOS paths: You can use a »*« (asterisk) 
wildcard character instead of an array or dictionary index. This means that TET PDF 
IFilter will iterate over all possible values of the array index, and include all correspond-
ing object values in the indexing process. An arbitrary number of wildcards may be 
used within a single pCOS path.

XML configuration for metadata sources. Sources of metadata properties can be con-
figured in the Source element (child of the Property element) of the XML configuration 
file. While the pdfObject attribute contains an extended pCOS path for a PDF object, the 
xmpName attribute contains the schema prefix and name of an XMP property:

<Source pdfObject="/Info/ArticleNumber"/>
<Source xmpName="acme:number"/>

One or more sources can be configured for a property.

Table 2.1 pCOS paths for various PDF objects

pCOS path type explanation

length:pages number number of pages in the document

/Info/Title string standard document info field Title

/Info/ArticleNumber string custom document info field ArticleNumber (document info entries 
can use arbitrary names)

/Root/Metadata stream XMP stream with the document’s metadata

images[*]/Metadata stream XMP metadata streams for all images in the document

fonts[*]/name string name of a font

length:fonts string number of fonts in a document

length:images string number of images in a document

fonts[*]/embedded boolean embedding status of a font

pages[*]/width number width of the visible area of the page

pages[*]/annots[*]/A/URI string target URL of the Web links on all pages

tagged Boolean true if the document contains tags with structure information

http://www.pdflib.com/pcos-cookbook/


2.2  Metadata Organization 21

2.2 Metadata Organization
Metadata is organized in the following hierarchical way:

> Properties are the fundamental building blocks for metadata. Properties in the Win-
dows operating system and the IFilter interface are organized by a unique numeric 
identifier (see below).

> Property sets comprise a group of properties which usually have some logical rela-
tionship. All properties in a set share the same GUID (see below). Property sets can be 
specified in the XML configuration file.

> Property set collections comprise a group of property sets. TET PDF IFilter implements 
several predefined property set collections. They can be used to collectively enable 
or disable multiple property sets together. It is not required to configure additional 
property set collections.

Property identification and GUIDs. Properties are identified in the IFilter interface by 
an identifier which consists of two parts:

> The first part is the GUID (Globally Unique IDentifier), also known as UUID (Universally 
Unique IDentifier), a unique 128-bit identifier in case-insensitive hexadecimal nota-
tion according to RFC 4122. The parts must be separated by dash characters »-«. There 
are various tools available for creating GUIDs, e.g. the online service at

www.uuidgenerator.net/

A sample GUID looks as follows: 7a737220-0cd0-11dd-bd75-0002a5d5c51b.
> The second part uniquely identifies the property within its property set. It can con-

sist of a positive integer called the identifier, or ID for short. Property identifiers in a 
set must start with the value 2, but are otherwise arbitrary. Property identifiers are 
supported in all IFilter clients.
Alternatively, the second part may consist of a cleartext name. The use of names in-
stead of IDs is deprecated, and is not supported by some IFilter clients, e.g. Windows 
Search. However, it can make configuration more convenient for those IFilter clients 
which support it, e.g. SharePoint. See »XML configuration for GUID+name treatment 
of properties«, page 25, for information on enabling the GUID+name method.

The GUID+ID or GUID+name combination is required to configure metadata property 
queries in search products. Other aspects of metadata properties are detailed in Section 
2.5, »Custom Properties«, page 24.

https://www.uuidgenerator.net/


22 Chapter 2:  Indexing Metadata Properties

2.3 Predefined Properties
The following predefined property set collections are built into TET PDF IFilter:

> Shell properties are known to Windows and have user-friendly names. TET PDF IFilter 
populates all shell properties which have equivalents in PDF documents. The values 
of shell properties are retrieved from the document info fields and document XMP 
metadata. Common examples are System.Author, System.Title, and System.Docu-
ment.DateCreated. For a list see Appendix A.1, »Shell Property Set Collection«. More 
information can be found at

msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx 

> PDF properties are specific to PDF documents. They are populated from pCOS paths 
and are enabled by default. Examples are the PDF version number, PDF/A standard 
to which the document conforms, bookmark contents, or page size. For a full list see 
Appendix A.2, »PDF Property Set Collection«.

> Document XMP properties cover many document properties in the XMP specifica-
tion; they are disabled by default. For a full list see Appendix A.3, »Document XMP 
Metadata Property Set Collection«.

> Image XMP properties cover XMP properties which are attached to images in the doc-
ument; they are disabled by default. For a full list see Appendix A.4, »XMP Image 
Metadata Property Set Collection«.

> Internal properties are auxiliary properties which are not intended for production use, 
but as development and debugging aids. They are enabled by default and include 
software version numbers and the time of indexing. For a full list see Appendix A.5, 
»Internal Property Set Collection«.

XML configuration for enabling property set collections. Predefined property set col-
lections can be enabled with the corresponding attributes in the Metadata/PropertySet-
Collection element:

<PropertySetCollection
shell="true"
pdf="true"
documentXmp="true"
imageXmp="true"
internal="true"/>

By default, the Shell, PDF and Internal property set collections are enabled, while the 
documentXMP and imageXMP property set collections are disabled. Custom properties 
are enabled as soon as they are specified.

Handling of all predefined and custom metadata properties can be disabled com-
pletely with the metdataHandling attribute of the Filtering element:

<Filtering metadataHandling="ignore">

Note If you enable or disable predefined properties you must recreate the index.

http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx


2.4  Examples with Predefined Properties 23

2.4 Examples with Predefined Properties
Section 1.1.1, »Interactive Search«, page 8, lists several uses of shell and predefined prop-
erties in Windows Search. Below we demonstrate more advanced queries based on pre-
defined properties.

Unique XMP document identifiers. XMP defines unique identifiers in the following 
properties within the XMP Media Management property set:

xmpMM:DocumentID
xmpMM:InstanceID
xmpMM:VersionID
xmpMM:OriginalDocumentID

These XMP properties are emitted by Adobe InDesign and other applications. TET PDF 
IFilter supports them with the predefined properties PDFlib.TET. xmpMM.DocumentID etc. 
These document identifiers can be used as follows:

> xmpMM:InstanceID is created as a unique entry for each modified version of a docu-
ment. Regardless of the file name it can be used to identify duplicates.

> xmpMM:OriginalDocumentID remains constant across modifications of a document. 
This can be used to identify document variants and derived documents.

In order to use these properties you must enable the XMP metadata property set collec-
tion (see Section A.4, »XMP Image Metadata Property Set Collection«, page 79, for the 
complete list of properties) with the following XML configuration snippet:

<n:PropertySetCollection documentXmp="true" imageXmp="true" internal="true" pdf="true"
shell="true"/>

Photoshop XMP image metadata. Professional images may contain metadata regard-
ing the photographer’s or agency’s name, city or country where the image was taken, or 
the content category. Adobe Photoshop and other applications record such properties 
in XMP metadata attached to the image, where the XMP may also be stored along with 
the image data in PDF.

In order to use these properties you must enable the XMP image metadata property 
set collection (see Section A.4, »XMP Image Metadata Property Set Collection«, page 79, 
for the complete list of properties) with the following XML configuration snippet:

<n:PropertySetCollection documentXmp="true" imageXmp="true" internal="true" pdf="true"
shell="true"/>

This instructs TET PDF IFilter to emit image-related XMP metadata. After recreating the 
index you can use image-related XMP properties in searches. The following query in 
Windows Search retrieves a list of documents containing images with the supplemental 
category TEN (=tennis), assuming the images carry appropriate XMP metadata:

PDFlib.TET.images.photoshop.SupplementalCategories:=TEN

As an alternative to the full canonical name the shorter display name can also be used 
in the query:

images.photoshop.SupplementalCategories:=TEN



24 Chapter 2:  Indexing Metadata Properties

2.5 Custom Properties
Custom metadata properties are additional properties beyond the predefined proper-
ties which meet specific requirements within an enterprise, organization, industry etc. 
TET PDF IFilter gives you full control over custom properties: they can be specified in 
the configuration file so that they will be generated by TET PDF IFilter and indexed by 
the search engine. For example, if you assign a product number as metadata property in 
all documents you can search for documents by product number instead of by content.

Planning custom metadata properties. In order to specify custom properties you 
must consider the following aspects (see »Property identification and GUIDs«, page 21, 
for details on GUIDs, identifiers, and friendly names):

> You can group one or more properties in a property set. Each property set needs a 
unique 128-bit identifier called GUID.

> The property identifier is a unique integer which identifies the property within its 
property set. Property identifiers in a set start with the value 2. With some IFilter cli-
ents the identifier can be replaced with a friendly name. You can override predefined 
properties by assigning the corresponding GUID+ID combination.

> The friendly name for a property is optional if an identifier is available, and required 
otherwise. It can be an arbitrary name which must be unique within the configura-
tion file. While for some IFilter clients such as SharePoint it can be used instead of 
the identifier, friendly names do not work in other IFilter clients (e.g. Windows 
Search).

> Property source: properties can be populated from document metadata or general 
PDF information according to Section 2.1, »Sources of Metadata in PDF«, page 19.

> The data type of the property: Int32 (32-bit integer), Double (floating point number 
with double precision), Boolean (true/false), DateTime (see below), and String.

> The precedence rule: if there is more than one data source for the property you can 
specify whether the first available non-empty data source has precedence (i.e. subse-
quent sources are ignored), or whether data from all non-empty sources are collect-
ed.

> Specify whether the property is emitted as a vector, i.e. multiple values are passed to 
the IFilter interface in an array structure instead of a flat value (see Section , »Mul-
tivalued properties«, page 26).

> A prefix which is prepended to the property name if properties are indexed as part of 
the full text (see Section 2.7, »Index Properties as Text«, page 32).

The DateTime property type. In order to specify a point in time you can use the 
DateTime data type for properties. While the output created for DateTime properties is 
always in the format required by the IFilter interface, the input supports different for-
mats depending on the source of the property:

> If the data source is a pCOS path, e.g. for a standard or custom document info field 
such as /Info/CustomDate, the value is expected in standard PDF date format as speci-
fied in ISO 32000-1, section 7.9.7. The general format of a PDF date string is 
D:YYYYMMDDHHmmSSOHH'mm. Note that the PDF date format (unlike the XMP for-
mat discussed below) does not support fractions of a second. Some examples:

D:202009231858 GMT
D:202009231058-08'00' same instant expressed in U.S. Pacific Standard Time
D:202009231958+01'00' same instant expressed in Central European Time



2.5  Custom Properties 25

> If the data source is an XMP property (e.g. xmp:ModifyDate), the value is expected as 
specified for the basic value type Date in the XMP Reference, identical to the format 
specified in ISO 86011. The general format of an XMP date string is YYYY-MM-
DDThh:mm:ss.sTZD, where TZD is the time zone designator (Z or +hh:mm or -hh:mm). 
Note that some parts are optional: XMP dates support six levels of granularity with 
increasing accuracy, while the PDF date format supports only a single level of granu-
larity. Some examples:

2020-09-23T18:58:30Z GMT
2020-09-23T13:58:30-05:00 same instant expressed in US Eastern Standard Time
2020-09-23T19:58:30+01:00 same instant expressed in Central European Time

TET PDF IFilter normalizes DateTime properties to UTC as specified in the IFilter inter-
face specification. As a result, searches for DateTime properties can always be performed 
with respect to the local time zone, regardless of the time zone in which the PDF docu-
ment has been created.

XML configuration for custom properties. One or more custom properties can be spec-
ified in the PropertySet element, where each Property element describes a property in the 
set:

<PropertySet guid="E544AFE6-13E2-40F1-A702-DCEBE8FB7B03">
<Property friendlyName="MailTo" identifier="2" type="String">

<Source xmpName="acme:mailto"/>
</Property>

</PropertySet>

Multiple PDF sources can be mapped to the same Windows property. The presence of a 
Property element will automatically enable processing for the specified property. How-
ever, handling of all predefined and custom metadata properties can be completely dis-
abled with the metadataHandling attribute of the Filtering element:
<Filtering metadataHandling="ignore">

XML configuration for GUID+name treatment of properties. TET PDF IFilter will use 
GUID+ID to identify properties in the IFilter interface if the identifier is available. Cus-
tom properties which do not have the identifier attribute but only the friendlyName attri-
bute, will be identified by GUID+name instead. In order to enable GUID+name treat-
ment for predefined properties as well (and to globally force GUID+name treatment) 
you can use the useIdentifier attribute of the Filtering element:

<Filtering useIdentifier="false">

The names used for the predefined properties are similar to the property prefixes 
shown in Table 2.2, except that the leading TET_ and the trailing underscore ’_’ are 
dropped (e.g. System_Author, pdfversion, dc_contributor, photoshop_DateCreated).

Using GUID+name treatment for properties can be more convenient than GUID+ID 
in some environments, especially SharePoint.

Suppressing a particular property value. In some situations it may be desirable to sup-
press a specific property value. For example, the value which represents an uninterest-
ing default is dropped, while only the interesting values are passed on to the IFilter cli-

1. See www.w3.org/TR/NOTE-datetime 

http://www.w3.org/TR/NOTE-datetime


26 Chapter 2:  Indexing Metadata Properties

ent. This can be achieved with the suppressValue attribute. If it is supplied for the Source 
element a specific value returned by the source will be suppressed. If it is supplied for 
the Property element all configured sources for the property are processed, the result is 
compared against the suppressValue attribute, and dropped if it matches.

Multivalued properties. Metadata properties can contain one or more values. Single-
valued properties consist of a flat value which describes the document as a whole. Exam-
ples for single-valued properties are the creation date (property sources: xmp:CreateDate 
and /Info/CreationDate) and the unique document identifier (dc:identifier).

Multivalued properties may occur more than once per document. Examples for mul-
tivalued properties are the list of document authors and the list of document keywords. 
Multivalued properties can be created with TET PDF IFilter in different ways:

> The source of the property is an XMP container type and can therefore hold multiple 
entries at once, e.g. dc:creator has type Seq in XMP.

> The property is populated from a multivalued pCOS path with wildcards, where the 
wildcards may be expanded to any number of individual entries, e.g. bookmarks[*]/
Title.

> The property is defined with more than one Source elements, and the precedence at-
tribute of the property has the value try-all, e.g. pdf:Keywords and /Info/Keywords. In 
contrast, the default precedence=first-wins processes only the first non-empty proper-
ty source.

Vector treatment of properties. By default, TET PDF IFilter processes all relevant 
sources in the property definition (subject to the precedence attribute), and emits as 
many non-empty property values as available. In other words, each value is returned as 
a single entity to the IFilter client. Property values are returned in unspecified order.

Alternatively, multivalued properties can be provided as vectors to the IFilter client. 
This means that a single array entity is emitted which contains one or more values. 
There are several relevant aspects of vector processing for properties:

> SharePoint supports multivalued properties only if they are processed as vector en-
tities.

> Some IFilter clients, e.g. Windows Search, support vector queries where you can 
search for one or more values in a multivalued vector property in a single query.

Keep in mind that there are two separate concepts: multivalued refers to an aspect of the 
property’s source, while vector processing refers to the way in which property values are 
transferred to the IFilter client. Vector processing can be applied to multivalued proper-
ties even if they contain only a single value.

Some of the predefined properties are multi-valued (see Appendix A, »Predefined 
Metadata Properties«). 

XML configuration for vector properties. Vector processing for custom properties can 
be enabled with the emitAsVector attribute of the Property element:

<Property friendlyName="MailTo" type="String" precedence="try-all" emitAsVector="true">
<Source xmpName="acme:mailto"/>
<Source xmpName="gov:mailto"/>

</Property>



2.6  Examples with Custom Properties 27

2.6 Examples with Custom Properties
In the examples below we demonstrate several custom metadata properties. In addition 
to TET PDF IFilter XML configuration snippets we also present the corresponding .prop-
desc snippets for Windows Search. A detailed discussion of .propdesc files and the corre-
sponding proptool utility can be found in Section 3.1.2, »Custom Properties«, page 35.

Common steps for custom metadata. In all samples the following steps are required:
> Add new property definitions to the XML configuration file for TET PDF IFilter. In 

some cases it is also required to enable predefined property set collections in the 
XML configuration file. The XML configuration file starter_samples.xml contains en-
tries for all examples below so that you can use it as a starting point. It must be con-
figured in the registry as detailed in Section 5.1, »Working with Configuration Files«, 
page 59. The starter_samples.xml configuration file is prepared for use with Windows 
Search. In order to use it with SharePoint or SQL Server you must apply minor adjust-
ments (see Table 3.2, page 39, and Table 3.5, page 44, respectively).

> In order to use the new properties with Windows Search you must configure them 
with a suitable XML property description file and register it in Windows as follows 
(see »Register property descriptions in Windows«, page 36):

proptool --register starter_samples.propdesc

Now you can configure Windows Explorer to display the new properties (see »Prop-
erty queries«, page 10). The property description file starter_samples.propdesc con-
tains entries for all examples below so that you can use it as a starting point.

> Recreate the index to collect the new properties. You must open a new Search or Ex-
plorer Window to enable additional property columns in the Details dialog.

pCOS properties for number of fonts or images. The total number of fonts in a PDF 
document can be queried with the pCOS path length:fonts; similarly for images. In order 
to emit these properties use the following XML configuration snippet within the 
PropertySet element:

<!-- PDF properties: number of fonts and images in the document -->
<n:Property friendlyName="fontcount" type="Int32" identifier="2">

<n:Source pdfObject="length:fonts" />
</n:Property>

<n:Property friendlyName="imagecount" type="Int32" identifier="3">
<n:Source pdfObject="length:images" />

</n:Property>

In order to use the new fontcount and imagecount properties with Windows Search you 
must configure and register it in a Windows property description file with the following 
.propdesc snippet:

<!-- Number of fonts in the document -->
<propertyDescription name="fontcount" formatID="{E544AFE6-13E2-40F1-A702-DCEBE8FB7B03}"

propID="2">
   <typeInfo type="Int32" isInnate="true" isViewable="true"/>
   <labelInfo label="fontcount"/>
   <searchInfo inInvertedIndex="true" isColumn="true"/>
</propertyDescription>



28 Chapter 2:  Indexing Metadata Properties

<!-- Number of images in the document -->  
propertyDescription name="imagecount" formatID="{E544AFE6-13E2-40F1-A702-DCEBE8FB7B03}"

propID="3">
   <typeInfo type="Int32" isInnate="true" isViewable="true"/>
   <labelInfo label="imagecount"/>
   <searchInfo inInvertedIndex="true" isColumn="true"/>
</propertyDescription>

Now you can display the numbers of fonts and images in a new column in Explorer win-
dows and search for documents with a particular number of fonts or images with the 
following query:

imagecount: >10

pCOS property for PDF standards. The predefined properties PDFlib.TET.pdfa, PDFlib. 
TET.pdfx etc. describe the standard conformance status of a document. These properties 
are based on the corresponding pCOS paths. If a PDF document doesn’t conform to any 
PDF/A standard flavor, the pCOS pseudo object pdfa returns none. However, the proper-
ty PDFlib.TET.pdfa suppresses the value none. In the following example we define a multi-
valued custom property Standards which works similar to the individual predefined 
properties PDFlib.TET.pdfa, PDFlib.TET.pdfx etc., but emits all standard conformance en-
tries in a single vector property. It uses the corresponding pCOS paths pdfa etc. as sourc-
es, but drops the uninteresting value none. The following XML configuration snippet 
within the PropertySet element defines the Standards property:

<n:Property friendlyName="Standards" emitAsVector="true" suppressValue="none"
identifier="4" precedence="try-all">
<n:Source pdfObject="pdfa"/>
<n:Source pdfObject="pdfe"/>
<n:Source pdfObject="pdfx"/>
<n:Source pdfObject="pdfua"/>
<n:Source pdfObject="pdfvt"/>

</n:Property>

In order to use the new Standards property with Windows Search you must configure 
and register it in a Windows property description file with the following .propdesc snip-
pet:

<propertyDescription name="Standards" formatID="{E544AFE6-13E2-40F1-A702-DCEBE8FB7B03}"
propID="4">
   <typeInfo type="String" multipleValues="true" isInnate="true"

isViewable="true"/>
   <labelInfo label="Standards"/>
   <searchInfo inInvertedIndex="true" isColumn="true"/>

</propertyDescription>

Now you can display the Standards column in an Explorer window where all applicable 
standards are displayed, separated by semicolons, e.g.

PDF-A-2a; PDF/UA-1

Undesired entries none are suppressed: if a document doesn’t conform to any of the rec-
ognized standards the Standards column remains empty. You can search for PDF/A doc-
uments with the following query which checks whether the property value contains 
PDF/A:



2.6  Examples with Custom Properties 29

Standards:~<PDF/A

The following more specific searches for the particular standard flavor PDF/A-3b:

Standards:=PDF/A-3b

pCOS property for PDF signature types. The pCOS path signaturefields[0]/sigtype checks 
the type of the first signature field. It returns one of the strings none, approval, certifi-
cation or doctimestamp. In the corresponding property definition we will suppress the 
value none since it is not very useful. The following XML configuration snippet within 
the PropertySet element configures TET PDF IFilter to emit information about all digital 
signatures in a document. Since we don’t know the number of signatures in advance we 
supply the asterisk character ’*’ as wildcard:

<n:Property friendlyName="Signature" suppressValue="none" identifier="5">
<n:Source pdfObject="signaturefields[*]/sigtype"/>

</n:Property>

This property reports all signature types in a document. Note that multiple signatures 
of the same type are reported only once since multiple occurrences of the same proper-
ty value are not possible. In order to use the Signature property with Windows Search 
you must configure and register it in a Windows property description file with the fol-
lowing .propdesc snippet:

<propertyDescription name="Signature"
formatID="{E544AFE6-13E2-40F1-A702-DCEBE8FB7B03}" propID="5">
   <typeInfo type="String" multipleValues="true" isInnate="true"

isViewable="true"/>
   <labelInfo label="Signature"/>
   <searchInfo inInvertedIndex="true" isColumn="true"/>

</propertyDescription>

Now you can display the signature status in a new column in an Explorer window and 
search for signed documents with the following query which checks whether the prop-
erty has a non-empty value:

Signature: <>[]

Possible values for the pCOS object sigtype are none (for unsigned fields), approval, 
certification, and doctimestamp (see pCOS Path Reference). The expression above tests 
whether the signature type is different from none.

pCOS property for user-defined document info fields. Most standard PDF document 
info entries, e.g. Title, Subject, Author, are automatically mapped to the corresponding 
shell properties (see Section A.1, »Shell Property Set Collection«, page 75). In addition to 
these standard entries you can emit user-defined info entries which may be present in 
the indexed PDF documents. The following XML configuration snippet within the 
PropertySet element defines the invoicenumber property which is populated from an info 
entry called InvoiceNumber:

<n:Property friendlyName="invoicenumber" identifier="6">
<n:Source pdfObject="/Info/InvoiceNumber"/>

</n:Property>



30 Chapter 2:  Indexing Metadata Properties

In order to use this property with Windows Search you must configure and register it 
with the following .propdesc snippet:

<propertyDescription name="invoicenumber"
formatID="{E544AFE6-13E2-40F1-A702-DCEBE8FB7B03}" propID="6">
<typeInfo type="String" isInnate="true" isViewable="true" isQueryable="true"/>
<labelInfo label="invoicenumber"/>
<searchInfo inInvertedIndex="true" isColumn="true"/>

</propertyDescription>

Now you can display the invoice number in a new column in Explorer windows and 
search for invoice number with the following query:

invoicenumber: =R123456

XMP property for identifying ZUGFeRD invoices. The ZUGFeRD and Factur-X stan-
dards1 use PDF/A documents with custom XMP properties for identifying invoices as 
ZUGFeRD-compliant. For example, the following XMP fragment describes a basic ZUG-
FeRD invoice:

<rdf:Description
rdf:about=""
xmlns:zf="urn:ferd:pdfa:CrossIndustryDocument:invoice:1p0#"
zf:ConformanceLevel="BASIC"
zf:DocumentFileName="ZUGFeRD-invoice.xml"
zf:DocumentType="INVOICE"
zf:Version="1.0"/>

TET PDF IFilter can easily be configured so that you can identify ZUGFeRD-conforming 
documents in your queries based on the corresponding ZUGFeRD XMP properties.

The following XML fragment declares the required ZUGFeRD namespace URI and 
prefix as specified in the standard:

<n:PrefixDeclarations>
<n:PrefixDeclaration

uri="urn:ferd:pdfa:CrossIndustryDocument:invoice:1p0#" prefix="zf"/>
</n:PrefixDeclarations>

The following XML configuration snippet within the PropertySet element configures TET 
PDF IFilter to emit the XMP property zf:DocumentType in the custom property zugferd. 
For ZUGFeRD-compliant documents it must contain the value INVOICE:

<n:Property friendlyName="Zugferd" identifier="7">
<n:Source xmpName="zf:DocumentType"/>

</n:Property>

In order to use the new zugferd property with Windows Search you must configure and 
register it in a Windows property description file with the following .propdesc snippet:

<propertyDescription name="Zugferd"
formatID="{E544AFE6-13E2-40F1-A702-DCEBE8FB7B03}" propID="7">
   <typeInfo type="String" isInnate="true" isViewable="true"/>
   <labelInfo label="Zugferd"/>
   <searchInfo inInvertedIndex="true" isColumn="true"/>

</propertyDescription>

1. More information about ZUGFeRD can be found on the PDFlib Web site.



2.6  Examples with Custom Properties 31

Now you can display the ZUGFeRD conformance status in a new column in Explorer 
windows and search for ZUGFeRD documents with the following query:

Zugferd:=INVOICE



32 Chapter 2:  Indexing Metadata Properties

2.7 Index Properties as Text
Most text retrieval engines support property queries in some way. However, querying 
for properties may not be possible with retrieval products which support only full-text 
search, e.g. SQL Server. In another scenario, explicitly searching for properties may not 
be desired if you want to search for any occurrence of the search term, regardless of 
whether it occurs in the document content or some property. In both situations you can 
instruct TET PDF IFilter to include all properties in the full-text index. In order to distin-
guish the property from actual document content, TET PDF IFilter can optionally prefix 
the property values with a string which makes it easier to identify properties as such in 
situations where the search engine does not directly support property searches. The ca-
nonical property name is used as prefix for the predefined properties listed in Appen-
dix A, »Predefined Metadata Properties«.

While indexing properties as text allows limited property searches in environments 
which otherwise do not support property searches at all, you should be aware of the fact 
that the property searches are limited. For example, Boolean or other expressions are 
not available for property values.

XML configuration for indexing metadata as text. To index metadata properties as 
text set the metadataHandling attribute of the Filtering element to propertyAndText (to 
transparently blend the properties into the main text) or propertyAndPrefixedText (to 
identify the properties with a prefix):

<Filtering metadataHandling="PropertyAndPrefixedText">

The optional prefix which will be prepended to custom properties when filtering the 
document can be specified for custom properties in the textIndexPrefix attribute of the 
Property element:

<Property friendlyName="Title" identifier="7" textIndexPrefix="TITLE_">
...
</Property>

The prefixes which will be prepended to predefined properties are constructed accord-
ing to the following scheme:

TET_<property name>_

where period characters ’.’ in the property name are replaced with underscore charac-
ters ’_’ (see Table 2.2 for examples).

Table 2.2 Prefixes for indexing metadata properties as text

Property set collection sample property name prefix for indexing metadata as text

Shell System.Author TET_System_Author_

TET PDFlib.TET.fullpdfversion TET_fullpdfversion_

XMP dc:contributor TET_dc_contributor_

Image photoshop:DateCreated TET_photoshop_DateCreated_



2.7  Index Properties as Text 33

Scenario 1: Transparently blend metadata properties into the main text. If metadata 
properties contains sufficiently distinctive text which identifies the target docu-
ment(s), it will suffice to include the properties in the full-text index and include it in 
standard full-text queries. For example, if you query for a specific article number, it 
doesn’t matter whether the number occurs in the main text of the document or in a 
metadata property, as long as only one particular document talks about the article 
number in question. In other words, if it doesn’t matter whether the text occurs in the 
main text or some metadata property, you must simply enable the indexing of proper-
ties as full-text, without any additional steps.

Use the following XML configuration to transparently blend metadata into the main 
text:

<Filtering metadataHandling="propertyAndText">

Scenario 2: Distinguish metadata from the main text. In other situations it may be rel-
evant whether the text occurs in the main document or in some metadata property. For 
example, it makes a big difference whether you search for documents authored by 
Doyle, or documents which include the term Doyle in the main text. In this scenario you 
must not only enable the indexing of properties as full-text, but also include suitable 
prefixes for each property which make it possible to distinguish between text in the 
main document contents and text in metadata properties.

The value of the predefined property System.Author will be prepended by the prefix 
TET_System_Author_. For example, you can emulate a property-based search for 
System.Author=Doyle with a full-text search for TET_System_Author_Doyle. Since 
System.Author is a predefined property, the corresponding XML configuration does not 
require any property-specific entries, but must simply enable indexing of properties as 
prefixed text:

<Filtering metadataHandling="propertyAndPrefixedText">

In order to emulate a property-based search for documents with the article number 
XY123456 with a full-text search for ArticleNumber_XY123456 use the following XML con-
figuration:

<Filtering metadataHandling="propertyAndPrefixedText">

<PropertySet guid="404e8a40-2e85-11dd-97f6-0002a5d5c51b">
<Property identifier="2" textIndexPrefix="ArticleNumber_">

<Source pdfObject="/Info/ArticleNumber"/>
</Property>

<PropertySet>



34 Chapter 2:  Indexing Metadata Properties

2.8 Ignore Page Contents in Favor of Properties
In some situations users may want to initiate searches based on metadata properties 
only instead of the page content, i.e. completely ignore page contents in the indexing 
step and exclusively rely on metadata properties. Conceivable reasons for such a sce-
nario are one or more of the following:

> More control over queries issued by users: don't waste sifting through long result 
lists when you can get an exact result based on metadata properties.

> The searched documents contain roughly the same words, but in different combina-
tions, e.g. invoices or other transactional documents.

> The actual page contents are not really relevant for the search since they are well-
known in advance. However, the kind of assembled pages for a particular document 
is of interest, e.g. insurance transactions which are associated with a variable num-
ber of contracts: not the exact contract wording is relevant for the search, but the 
number and kind of assembled contract documents.

> The searched documents don’t contain any searchable text at all, e.g. scanned docu-
ments without any OCR performed.

> The documents contain information which does not contribute to the index in any 
reasonable way, e.g. long financial documents which contain only numbers, or tech-
nical plans without text (or only text within captions in the drawings).

> Performance optimization in any of the cases above: don’t waste time indexing doc-
uments if the contents are known to be unhelpful for the search.

XML configuration for disabling page content indexing. To completely disable page 
content indexing set the indexPageContents attribute of the Filtering element to false:

<Filtering indexPageContents="false" metadataHandling="property">



3.1  Metadata Properties in Windows Search 35

3 Metadata Properties in IFilter Clients

3.1 Metadata Properties in Windows Search
Note Even if you ultimately want to work with SharePoint or another IFilter Client, you can use Win-

dows Search to get started with metadata handling.

3.1.1 Predefined Properties

Configuration. The Windows operating system supports a powerful property system 
for handling metadata properties defined by the system (called shell properties) and 
user-defined (custom) properties. Windows Search uses the Windows property system 
to access descriptions of system (shell) properties and user-defined metadata proper-
ties.

Many properties are already built into TET PDF IFilter (see Section 2.3, »Predefined 
Properties«, page 22, and Appendix A, »Predefined Metadata Properties«); some of these 
are fed to Windows shell properties. If you want to work with predefined properties the 
configuration is rather simple:

> Descriptions of the predefined properties must be made available to Windows. This 
is done automatically if you selected Windows Search as IFilter client during the in-
stallation of TET PDF IFilter. Otherwise you must manually register the file prede-
fined_properties.propdesc (see below).

> Most property set collections in TET PDF IFilter are enabled by default. Only if you 
want to work with document XMP or image XMP properties you must enable the re-
spective collection in the XML configuration file (see Section , »XML configuration 
for enabling property set collections«, page 22).

Once you configured a property in Windows and TET PDF IFilter you can use it for 
searching (see »Property queries«, page 10).

The option --list _all dumps all properties which are registered in the system. The dis-
play names of all predefined non-shell properties are shortened versions of the canoni-
cal names, e.g. the display name of PDFlib.TET.pdfa is pdfa (regardless of the UI language).

3.1.2 Custom Properties
In order to search with custom metadata properties in Windows Search you must con-
figure them in both the Windows Property System and TET PDF IFilter. Note that cus-
tom properties are implicitly enabled as soon as they are specified in the XML configu-
ration file.

Property description files. In order to use custom metadata properties with Windows 
Search you must prepare a property description file (.propdesc) which specifies the 
names, data types, and GUIDs of properties, as well as other property attributes. The 
property descriptions must match the corresponding property descriptions in the XML 
configuration file for TET PDF IFilter. Property descriptions must be specified as XML 
files according to the syntax described at the following location:

msdn.microsoft.com/en-us/library/bb773879(VS.85).aspx 

http://msdn.microsoft.com/en-us/library/bb773879(VS.85).aspx


36 Chapter 3:  Metadata Properties in IFilter Clients

An XML schema description of the .propdesc format is available in WDS_Property_Descrip-
tion_Schema.xsd. The following fragment demonstrates some property descriptions:

<propertyDescription name="fontcount" formatID="{5eac0060-1ba4-11dd-92c4-0002a5d5c51b}"
propID="2">

<typeInfo type="Int32" isInnate="true" isViewable="true"/>
<labelInfo label="fontcount"/>
<searchInfo inInvertedIndex="true" isColumn="true"/>

</propertyDescription>

<propertyDescription name="weblink"
formatID="{5eac0060-1ba4-11dd-92c4-0002a5d5c51b}" propID="6">
<typeInfo type="String" isInnate="true" multipleValues="true" isViewable="true"/>
<labelInfo label="weblink"/>
<searchInfo inInvertedIndex="true" isColumn="true"/>

</propertyDescription>

The multipleValues="true" attribute is important for multivalued properties (see Section , 
»Multivalued properties«, page 26). Note that Windows restricts property names to a 
maximum length of 64 characters.

Note The file starter_samples.propdesc in the TET PDF IFilter distribution may serve as a starting 
point. The file starter_samples.propdesc contains property descriptions for all examples pre-
sented later in this chapter.

Register property descriptions in Windows. You must register custom property de-
scriptions with the command-line utility proptool.exe which is installed with TET PDF 
IFilter. Supply the name of a property description file to register it with the Windows 
property system (make sure to enclose the path with double quotes if it contains space 
characters):

proptool --register acme.propdesc

Now you can configure Windows Explorer to display the new properties (see »Property 
queries«, page 10). The Windows property system stores the names of property descrip-
tion files in the following registry keys (and increasing numbers in the last component):

Fig. 3.1
Search results in Windows Explorer and additional columns with custom properties



3.1  Metadata Properties in Windows Search 37

HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\PropertySystem\PropertySchema\0000

The proptool utility emits an error message and a HRESULT error value if the property file 
could not be registered successfully, e.g. if a duplicate property was detected. In case of 
an error you can check the application event log for more details:

> Start, Settings, Control Panel, Administrative Tools, Event Viewer
> Click on Application in the left pane.
> In case of a problem with property registration there will be an entry with source 

Microsoft-Windows-propsys. Double-click on the line containing the entry and exam-
ine the error message (e.g. Omitted duplicate property).

Alternatively, you can use the HRESULT value emitted by proptool to analyze the prob-
lem. A list of HRESULT values and explanations can be found at

msdn.microsoft.com/en-us/library/cc231198.aspx 

Additional error numbers related to XML parsing can be found at

https://msdn.microsoft.com/en-us/library/ms753129%28v=vs.85%29.aspx

The following requirements must be met when registering property description files 
for Windows Search:

> Property descriptions must use the file name suffix .propdesc since other suffixes are 
not accepted by the Windows Property system.

> In order for custom properties to become available for searching, you must register 
the property description, stop and restart the search service, and force a rebuild via 
the Windows Search options:

proptool --register "acme.propdesc"
net stop wsearch
net start wsearch
...rebuild the catalog

(see »Starting and stopping the Windows Search service«, page 8)...

> Registered properties must not conflict in GUID+ID or GUID+name with existing 
Windows properties (including the shell properties). A list of Windows properties 
can be found at

msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx 

> You need Administrator rights (see »Running privileged commands«, page 6) to 
write to the HKEY_LOCAL_MACHINE registry hive to run the proptool tool.

> Since the registry stores only the name of the property description file (but not its 
contents), the propdesc file must remain at the registered location to make sure that 
the property descriptions will be available for searches.

> The propdesc file must be readable for all users.
> You can register multiple property description files. However, two property descrip-

tion files must not include descriptions of the same property (as characterized by 
GUID+ID).

> If you apply changes in property description files and repeatedly register and unreg-
ister a propdesc file with the same name (which is typical for testing), rebooting may 
be required to ensure that Windows correctly picks up all property descriptions.

http://msdn.microsoft.com/en-us/library/cc231198.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd561977(v=vs.85).aspx


38 Chapter 3:  Metadata Properties in IFilter Clients

Use the --unregister option to remove a previously registered property description:

proptool --unregister "c:\property\acme.propdesc"

3.1.3 Properties in TET PDF IFilter

Predefined TET PDF IFilter properties. A property description file predefined_proper-
ties.propdesc for all predefined properties is available. If you selected Windows Search as 
IFilter client in the installer it is already registered for Windows Search. Although the 
property definitions are built into TET PDF IFilter you must enable the desired property 
set collections in the XML configuration file (see Section 2.3, »Predefined Properties«, 
page 22) before you can use them in queries.

XML configuration for Windows Search. Table 3.1 lists requirements and recommen-
dations related to the XML configuration for TET PDF IFilter when working with Win-
dows Search. The sample configuration file Windows Search config.xml implements these 
requirements and can be used as a starting point.

Table 3.1 XML configuration for Windows Search

element attribute requirements and recommendation

Filtering useIdentifier Must be true since Windows Search supports only the GUID+ID method 
for identifying properties, but not GUID+name (see »XML configuration 
for GUID+name treatment of properties«, page 25).

PropertySet-
Collection

shell Should be true to support the shell properties known to Windows Search 
(note that true is the default anyway).

Property identifier Required since Windows Search supports only the GUID+ID method for 
identifying properties, but not GUID+name (see »XML configuration for 
GUID+name treatment of properties«, page 25).



3.2  Metadata Properties in SharePoint 39

3.2 Metadata Properties in SharePoint
You can programmatically control metadata handling in SharePoint using the Enter-
prise Search Administration namespace Microsoft.Office.Server.Search.Administration. The 
following concepts are used for handling metadata properties in SharePoint:

> Crawled properties are created by TET PDF IFilter when indexing (crawling) PDF docu-
ments. Crawled properties can have multiple values. They are controlled via the TET 
PDF IFilter configuration file. SharePoint will search crawled properties like other 
fields, but advanced features for property queries are not be available.

> Managed properties can be used in search queries and advanced search, and displayed 
in search results.

More details on managed properties in the Advanced Search Page can be found at

msdn.microsoft.com/en-us/library/bb428648.aspx 
msdn.microsoft.com/en-us/library/bb608302.aspx 

XML configuration for SharePoint. Table 3.2 lists requirements and recommendations 
related to the XML configuration for TET PDF IFilter when working with SharePoint. The 
sample configuration file SharePoint config.xml implements these requirements and can 
be used as a starting point.

Configure custom metadata properties. Proceed as follows to prepare custom metada-
ta properties for indexing:

> Run a full crawl. During the crawl TET PDF IFilter reports the properties which are 
configured in the XML configuration file and found in one or more documents. This 
is required for SharePoint to pick up the newly found crawled properties.
SharePoint generates synthetic names (e.g. »Category 1«, »Category 2«, etc.) for all new 
property categories. All crawled properties with the same GUID are collected in the 
same new category. You can determine the common GUID by looking at any of the 
crawled properties in a category. In the SharePoint administration website under 
Application Management click Manage service applications, Search Service Application. On 
the page Search Service Application: Search Administration on the left-hand side click 
Search Schema. This will display the page Search Service Application: Managed 
Properties. Click on Categories at the top of the page, and click on a category with a 
new synthetic name. Click on any crawled property and look at the Property Set ID to 
determine the GUID.Compare the GUID to those in PropertySet/@guid in the XML 
configuration file for TET PDF IFilter (if you created custom properties) or the prop-

Table 3.2 XML configuration for SharePoint

element attribute requirements and recommendation

Filtering useIdentifier Set to false to force GUID+name treatment of all properties including the 
predefined properties.

Property emitAsVector Must be true for properties which may have multiple values (see Section , 
»Multivalued properties«, page 26).

Property friendlyName Since GUID+name treatment facilitates locating properties in the list, we 
recommend the use of this attribute (see »Property identification and 
GUIDs«, page 21).

http://msdn.microsoft.com/en-us/library/bb428648.aspx
http://msdn.microsoft.com/en-us/library/bb608302.aspx


40 Chapter 3:  Metadata Properties in IFilter Clients

erty set GUIDs in Appendix A, »Predefined Metadata Properties« (if you use proper-
ties from the predefined property set collections).

> Rename the synthetic category names created by SharePoint with user-friendly 
names after identifying the categories by the GUIDs determined in the previous 
step:
SharePoint: In the Category page click the drop-down menu for a category name and 
click Edit Category. Edit the name in the Category name field as desired and click OK.

> SharePoint: In the Search Service Application administration page click on Managed 
Properties.

> Click New Managed Property (see Figure 3.2).
> Enter the property’s name, description, and data type, and click the button Add 

Mapping which is located in the lower right corner to the right of the field Mapping to 
crawled properties.

> The drop-down menu Filter on a category will filter the list of crawled properties 
which are displayed in the list box titled Crawled property selection. The list box dis-
plays a list of properties along with their category name and property identifier or 
friendly name. The choice of identifier or friendly name depends on the property 
definition in the XML configuration file of TET PDF IFilter, see »Configure custom 
metadata properties«, page 39. Select a newly crawled property, assign a name to the 
managed property, and save it.

Preparing SharePoint XML for searches on managed properties. In this step you will 
prepare the required XML for adding managed properties to Advanced Search. The next 
section describes how to actually apply this XML. We describe the XML with examples 
below:

Fig. 3.2
Adding managed properties in SharePoint



3.2  Metadata Properties in SharePoint 41

For each property you must create a PropertyDef element as child of the PropertyDefs 
element:

<PropertyDef Name="EbookDateOfBirth" DataType="datetime" DisplayName="Ebook Date of 
Birth"/>

The Name attribute must correspond to the property name, the DataType attribute de-
scribes the property’s type according to Table 3.3, and DisplayName contains an arbitrary 
name which will be presented in the user interface.

In order to make the new managed property available for searches on PDF docu-
ments, add the property to the ResultType element:

<ResultType DisplayName="PDF Documents" Name="pdfdocuments">
<Query>FileExtension='pdf'</Query>
<PropertyRef Name="Author"/>
<PropertyRef Name="Description"/>
<PropertyRef Name="FileName"/>
<PropertyRef Name="Size"/>
<PropertyRef Name="Path"/>
<PropertyRef Name="Created"/>
<PropertyRef Name="Write"/>
<PropertyRef Name="CreatedBy"/>
<PropertyRef Name="ModifiedBy"/>
<PropertyRef Name="EbookDateOfBirth"/>

</ResultType>

A complete XML file (starter_advanced_search.xml) for all properties in the starter set is 
installed with TET PDF IFilter. It has been created with Microsoft’s Virtual PC image for 
SharePoint evaluation. You can use the XML for evaluation and testing. Note, however, 
that XML for production sites must carefully be constructed based on the existing XML 
of the site and the newly configured properties.

Search for custom metadata properties. In order to implement advanced metadata 
search you must configure TET PDF IFilter to index the property (see Section 2.5, »Cus-
tom Properties«, page 24). This will instruct TET PDF IFilter to create a crawled property. 
Then you must make a new managed property available in the Advanced Search page as 
follows:

> Log on to the SharePoint site at and navigate to Advanced Search. This is the search 
form where we want to add a new managed property under Add property restrictions... 
at the bottom of the page.

Table 3.3 Property data types for SharePoint

data type in TET PDF IFilter data type for SharePoint

Int32 integer

Double decimal

Boolean boolean

DateTime datetime

String text



42 Chapter 3:  Metadata Properties in IFilter Clients

> In the upper-right corner of the page, click Site Actions. In the drop-down menu that 
opens, click Edit Page. This will change the look of the page and adds controls for 
modifying the page.

> In the upper-right corner of the box titled Advanced Search Box, click edit. In the drop-
down menu that opens, select Modify Shared Web Part. This surrounds the Advanced 
Search Box with a dashed line, and to the right a new box appears which is also titled 
Advanced Search Box. It contains entries Search box, Scopes, Properties, etc.

> Expand the Properties category and look for the field Properties which contains XML. 
Click into the field, and a button with three dots inside and a tool tip Click to use 
builder will appear. Clicking on the button will open a text entry box with XML. This 
XML must be edited according to the example below; you may want to copy the XML 
to an XML editor and paste it back after editing.

> After closing the text edit box, click Ok at the bottom of box where the editing took 
place, and click Check In to Share Draft at the top of the page. This brings you back to 
the normal look of the Advanced Search form, and if All Results is selected in the Result 
type drop-down menu, the new property name will appear in the (Pick Property) 
menu at the bottom of the page under Add property restrictions.... It may also be neces-
sary to click Publish at the top of the Advanced Search form in addition to clicking 
Check In to Share Draft to make the modified form available to all users.

Now you can search for documents with specific entries in the managed property. Fig-
ure 3.3 shows the Advanced Search page with the custom property Ebook Date of Birth in 
the lower section.

Note If you suspect that individual documents are missing from the list of search results, SharePoint 
may have removed them as duplicates. In order to disable duplicate removal click the »View 
duplicates« link on the Search Results page.

Search for metadata properties. Table 3.4 contains examples for property queries. 
Property queries are constructed according to the following simple scheme:

Fig. 3.3
Advanced Search Page

in SharePoint with
custom property



3.2  Metadata Properties in SharePoint 43

<property name>:<value>

The syntax description for property-based queries can be found at
msdn.microsoft.com/en-us/library/office/ff394509%28v=office.14%29.aspx 

Table 3.4 Metadata query examples for SharePoint

Search term example Explanation

author:Doyle author contains Doyle

author:Arthur author:Doyle author contains Arthur and Doyle

author:"Arthur Conan Doyle" author contains the exact text Arthur Conan Doyle

http://msdn.microsoft.com/de-de/library/office/ff394509%28v=office.14%29.aspx 


44 Chapter 3:  Metadata Properties in IFilter Clients

3.3 Metadata Properties in SQL Server
SQL Server does not support metadata property indexing or searching. By default, all 
properties will therefore be ignored. In order to implement metadata queries we recom-
mend to index metadata properties as text (see Section 2.7, »Index Properties as Text«, 
page 32).

XML configuration for SQL Server. Table 3.5 lists requirements and recommendations 
related to the XML configuration for TET PDF IFilter when working with SQL Server. The 
sample configuration file SQL Server config.xml implements these requirements and can 
be used as a starting point.

Search for metadata properties. Since there is no dedicated support for searching 
properties in SQL server, you must query for metadata properties in a full-text query. 
Once you enabled indexing of properties as text, you can search for documents with the 
author Arthur Conan Doyle as follows:

SELECT name FROM DocumentTable WHERE CONTAINS(*,'"TET_System_Author_Arthur Conan Doyle"')
GO

Use the following statement to query for documents where the author starts with 
Arthur:

SELECT name FROM DocumentTable WHERE CONTAINS(*,'"System_Author_Arthur*"')
GO

Table 3.5 XML configuration for SQL Server

element attribute requirements and recommendation

Filtering metadataHandling Set this attribute to propertyAndText or propertyAndPrefixedText to 
enable indexing properties as text (see Section 2.7, »Index Properties as 
Text«, page 32).

Property textIndexPrefix Set the prefix if you want to explicitly search for properties.



4.1  PDF Versions and Protected Documents 45

4 Advanced PDF Indexing

4.1 PDF Versions and Protected Documents
Supported PDF input. TET PDF IFilter has been tested against millions of PDF test files 
from various sources. It accepts PDF 1.0 up to PDF 1.7 extension level 8 corresponding to 
Acrobat DC as well as PDF 2.0 (ISO 32000-2) including encrypted documents. TET PDF 
IFilter attempts to repair various kinds of malformed and damaged PDF documents.

By default, TET PDF IFilter extracts text from the page contents, standard document 
info entries, annotations, bookmarks and form fields and processes file attachments 
and PDF portfolios. This behavior can be modified, see Section 4.2, »PDF Document Do-
mains«, page 47).

Note TET PDF IFilter does not support dynamic XFA forms. XFA is a separate format which is not part 
of the PDF standard ISO 32000. Since XFA is packaged inside a small PDF wrapper XFA forms are 
often confused with PDF documents although XFA is actually a completely different file format 
which requires dedicated software.

Protected PDF documents. TET PDF IFilter indexes text and metadata from all docu-
ments as long as it can open it. This includes the following kinds of PDF documents:

> Unencrypted documents;
> Documents which are encrypted with a master password, but do not require any 

user password. The status of Acrobat’s security setting Content Copying Allowed/Not 
Allowed does not affect documents in this group.

At first glance the second category may look like a violation of the document author’s 
intention for protecting the document. However, it is not, since TET PDF IFilter does not 
provide any means for actually copying the text; it merely helps the search engine with 
indexing the document and subsequently locating the document in a search. Once the 
document is identified in a search and opened in Acrobat, it is still subject to any restric-
tions regarding content copying which may have been specified for the document.

Encrypted PDF documents which can not be opened are logged with logging level 2 
(see Section 6.4, »Debugging Facilities«, page 71). This category includes the following 
cases:

> Encrypted documents which require a user password, i.e. those which cannot be 
opened in Acrobat without supplying the corresponding password.

> Encrypted PDF attachments in otherwise unprotected documents.
> Documents which have been encrypted with a user-specific public-key certificate.

Damaged PDF documents. PDF documents may contain damaged data structures, ei-
ther because of faulty PDF generation software or because of some accidental modifica-
tion (e.g. caused by failed network transfer). TET PDF IFilter automatically detects dam-
aged PDF documents and attempts to repair such documents in order to allow for 
successful extraction of text and metadata. This repair mode works automatically as 
part of the indexing process. In some cases this mode may not be sufficient, and TET 
PDF IFilter must process the document with a more thorough repair mode. Since it is 



46 Chapter 4:  Advanced PDF Indexing

more time-consuming, this forced repair mode is only applied for severely damaged 
PDFs which cannot successfully be processed in automatic repair mode.

If a document can be opened successfully, but contains one or more damaged pages, 
these pages will be ignored and processing continues with subsequent pages. For each 
ignored page an entry will be written to the application event log.



4.2  PDF Document Domains 47

4.2 PDF Document Domains
PDF documents may contain text in many other places than only the page contents, 
such as in annotations and bookmarks. They also make use of metadata in Adobe’s XMP 
form or as classical document info entries. The places in a PDF document which may 
contain text are referred to as PDF document domains. The list below describes all PDF 
document domains along with notes how to display the corresponding text in Acrobat. 
The list also contains the default actions of TET PDF IFilter for all document domains. In 
short, TET PDF IFilter indexes the text in all relevant locations. As a result, you may get 
search hits for documents where it is not obvious at first glance why a hit is produced. 
Since search term highlighting is generally not available in IFilter clients, it is important 
to know how to locate the search term in the result documents. Remember that the 
searched text may be present in a location different from the actual page contents, and 
refer to the list below if you have trouble locating the search text in a PDF document 
where TET PDF IFilter reports a search hit.

Notes regarding the descriptions below:
> Searching »Multiple PDFs« with Acrobat refers to the following kind of search: Edit, 

Advanced Search, click Show More Options (if present) and in the Look In: pull-down se-
lect a folder of PDF documents (see Figure 4.1).

> Some of the descriptions refer to the property set collections documentXMP, 
imageXMP, shell, pdf, and internal. These can be enabled in the XML configuration file 
(see Section 2.3, »Predefined Properties«, page 22). By default, the shell, pdf and 
internal property set collections are enabled, while the documentXMP and imageXMP 
property set collections are disabled. See Section 2.3, »Predefined Properties«, page 
22, for more details on property set collections.

> The notation Filtering@indexNestedPdf refers to an attribute in the XML configuration 
file (see Section 5.2, »XML Elements and Attributes«, page 61).

In the remaining section we provide information on PDF domain searching. In addition, 
we summarize how to search these document domains with Acrobat DC. This is import-
ant to locate search hits in Acrobat.

Text on the page. Page contents are the main source of text in PDF. Text on a page is 
rendered with fonts and encoded using one of the many encoding techniques available 
in PDF.

> How to display with Acrobat: page contents are always visible
> How to search a single PDF with Acrobat DC: Edit, Find or Edit, Advanced Search. TET 

PDF IFilter may be able to process the text in documents where Acrobat does not cor-
rectly map glyphs to Unicode values. In this situation you can use the TET Plugin 
which is based on TET. The TET Plugin offers its own search dialog via Plug-Ins, PDFlib 
TET Plugin... TET Find. However, it is not intended as a full-blown search facility.

> How to search multiple PDFs with Acrobat DC: Edit, Advanced Search and in Where 
would you like to search? select All PDF Documents in, and browse to a folder with PDF 
documents.

> TET PDF IFilter: page contents are indexed by default. However, in special situations 
you may want to disable page content indexing with Filtering@indexPageCon-
tents="false".



48 Chapter 4:  Advanced PDF Indexing

Predefined document info entries. standard document info entries are key/value 
pairs.

> How to display with Acrobat DC: File, Properties...
> How to search a single PDF with Acrobat DC: not available
> How to search multiple PDFs with Acrobat DC: click Edit, [Advanced] Search and Show 

More Options near the bottom of the dialog. In the Look In: pull-down select a folder of 
PDF documents and in the pull-down menu Use these additional criteria select one of 
Date Created, Date Modified, Author, Title, Subject, Keywords.

> TET PDF IFilter: predefined document info entries are indexed if PropertySetCol-
lection/@shell="true" (which is default)

Custom document info entries. Custom document info entries can be defined in addi-
tion to the standard entries.

> How to display with Acrobat DC: File, Properties..., Custom (not available in Acrobat 
Reader)

> How to search with Acrobat DC: not available

Fig. 4.1
Acrobat’s advanced
search dialog



4.2  PDF Document Domains 49

> TET PDF IFilter: custom document info entries are indexed if custom properties are 
defined based on this document info entry

XMP metadata on document level. XMP metadata consists of an XML stream contain-
ing extended metadata.

> How to display with Acrobat DC: File, Properties..., Description, Additional Metadata.. 
(not available in Acrobat Reader)

> TET PDF IFilter: document XMP metadata indexed if PropertySetCollection/@docu-
mentXMP="true" or custom properties are defined based on document XMP

XMP metadata on image level. XMP metadata can be attached to document compo-
nents, such as images, pages, fonts, etc. However, XMP is commonly only found on the 
image level (in addition to document level).

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Content. Locate 
the image in the tree structure, right-click on it and select Show Metadata... . (not 
available in Acrobat Reader)

> How to search with Acrobat DC: not available
> TET PDF IFilter: XMP image metadata is indexed if PropertySetCollection/@image-

XMP="true"

Text in form fields. Form fields are displayed on top of the page. However, technically 
they are not part of the page contents, but represented by separate data structures.

> How to display with Acrobat DC: Tools, Prepare Form (not available in Acrobat Reader)
> How to search with Acrobat DC: Acrobat searches the visible contents of form fields
> TET PDF IFilter: form field values are indexed if Filtering@indexFormFields="true" 

(which is default).
The following additional aspects of form fields are indexed if Filtering@indexExten-
dedFormFields="true": default value, list items, tooltips.
If the main page contents (i.e. the form field captions) are not required because they 
are constant you can disable page content indexing with Filtering@index-
PageContents= "false".

Text in comments (annotations). Similar to form fields, annotations (notes, com-
ments, etc.) are layered on top of the page, but are represented by separate data struc-
tures. The interesting text contents of an annotation depend on its type. For example, 
for Web links the interesting part may be the URL, while for other annotation types the 
visible text contents may be relevant.

> How to display with Acrobat DC: Tools, Comment, Comments List
> How to search a single PDF with Acrobat DC: Edit, Search and check the box Include 

Comments, or use the Search Comments button on the Comments List toolbar
> How to search multiple PDFs with Acrobat DC: click Edit, Advanced Search and Show 

More Options. In the Look In: pull-down select a folder of PDF documents and in the 
pull-down menu Use these additional criteria select Comments.

> TET PDF IFilter: comments (both appearance streams and Contents entries) are in-
dexed if Filtering@indexAnnotations="true" (which is default).

Text in bookmarks. Bookmarks are not directly page-related, although they may con-
tain an action which jumps to a particular page. Bookmarks can be nested to form a hi-
erarchical structure.



50 Chapter 4:  Advanced PDF Indexing

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Bookmarks
> How to search a single PDF with Acrobat DC: Edit, Advanced Search and check the box 

Include Bookmarks
> How to search multiple PDFs with Acrobat DC: click Edit, [Advanced] Search and Show 

More Options. In the Look In: pull-down select a folder of PDF documents and in the 
pull-down menu Use these additional criteria select Bookmarks (not available in Acro-
bat Reader)

> TET PDF IFilter: form field values are indexed if Filtering@indexBookmarks="true" 
(which is default).

File attachments. PDF documents may contain file attachments (on document or 
page level) which may themselves be PDF documents.

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Attachments
> How to search with Acrobat DC: Use Edit, AdvancedSearch and check the box Include 

Attachments (not available in Acrobat Reader). Nested attachments are not searched 
recursively.

> TET PDF IFilter: PDF attachments are indexed recursively if Filtering@indexNested-
Pdf="true" (which is default)

PDF packages and portfolios. PDF packages and PDF portfolios are file attachments 
with additional properties.

> How to display with Acrobat DC: Acrobat presents the cover sheet of the package/
portfolio and the constituent PDF documents with dedicated user interface ele-
ments for PDF packages.

> How to search a single PDF package with Acrobat DC: Edit, Search Entire Portfolio
> How to search multiple PDF packages with Acrobat DC: not available
> TET PDF IFilter: PDF documents contained in packages/portfolios are indexed recur-

sively if Filtering@indexNestedPdf="true" (which is default)

PDF standards and other PDF properties. This domain does not explicitly contain text, 
but is used as a container which collects various intrinsic properties of a PDF document, 
e.g. PDF/X and PDF/A status, Tagged PDF status, etc.

> Acrobat DC: View, Show/Hide, Navigation Panes, Standards (only present for standard-
conforming PDFs)

> How to search with Acrobat DC: not available
> TET PDF IFilter: PDF properties are indexed if PropertySetCollection/@pdf="true" 

(which is default). Conformance to PDF/A and other standards can be queried with 
the properties PDFlib.TET.pdfa etc.

Tagged PDF and Artifacts. TET reconstructs the layout structure and hierarchy direct-
ly from the page contents without using the structure tree which is present in Tagged 
PDF documents. Text and images which are not required to understand the document 
but rather are generated for layout purposes or decoration may be marked as Artifacts 
in Tagged PDF. The most common use of Artifacts is for running headers and footers in-
cluding page numbers and chapter titles. Depending on the use case it may or may not 
be desirable to process page contents which are marked as Artifacts.

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Tags; in the Tags 
menu click Find... and select Artifacts. Text, images and vector graphics which are 
marked as Artifact are highlighted.



4.2  PDF Document Domains 51

Alternatively, you can activate Tools, Accessibility, Touch Up Reading Order. This tool 
highlights the tagged contents on the page with shaded rectangles. Contents which 
are not highlighted represents Artifacts.

> How to ignore Artifacts when searching with Acrobat DC: not available
> How to ignore Artifacts with TET PDF IFilter: provide the page option ignoreartifacts.

Layers. Using layers (technically known as optional content) the page contents can be 
made visible or invisible. Depending on the use case it may or may not be desirable to 
process page contents on invisible layers.

> How to display with Acrobat DC: View, Show/Hide, Navigation Panes, Layers: layers 
which are currently visible have an eye symbol in front of the name. Clicking on this 
symbol controls the visibility of a layer.

> How to search with Acrobat DC: Acrobat searches the contents of all layers. If a search 
result is found on an invisible layer, Acrobat offers to make the layer visible.

> How to process layers with TET PDF IFilter: the page option layers=all/visible/invisible 
can be used to restrict content extraction to either visible or invisible layers. Alterna-
tively, the contents of all layers can be processed which only makes sense if the lay-
ers don’t overlap. The default is visible.



52 Chapter 4:  Advanced PDF Indexing

4.3 Automatic Language Detection
Importance of proper language detection. Several aspects of content indexing can sig-
nificantly be improved by language-specific postprocessing of the indexed content. 
While the details vary among different IFilter clients, the following aspects are highly 
language-dependent:

> A component called wordbreaker is used to break the text content into words.
> Word stemmers extract the base form of an indexed word. This way search queries 

produce hits even if the search term is used in a slightly modified (inflected) form in 
the indexed document.

> Thesaurus-based search
> Noise word lists contain words which are considered irrelevant for searches, and are 

therefore not included in the index, e.g. the, a, and, at, on.

Automatic language detection. The features mentioned above can only be imple-
mented if the natural language is known in which the text has been written. By default, 
IFilter clients will use the system locale for all language-specific processing. As a conse-
quence, indexing Japanese documents on an English system will create mediocre index 
contents and therefore searches can fail to locate existing target documents. Assigning 
the proper natural language is especially important for documents with East-Asian lan-
guage content.

In order to improve all aspects of language-specific processing during the indexing 
process, TET PDF IFilter automatically determines the natural language for text in the 
document contents and properties of type string. TET PDF IFilter deploys two techniques 
for determining the language:

> In some cases checking the script (writing system) is sufficient for determining the 
language. For example, Japanese Hiragana characters are exclusively used for writ-
ing text in the Japanese language.

> Many languages share the same writing system with other languages. For example, 
most Western languages are written in the Latin script. In these cases TET PDF IFilter 
applies statistical analysis to determine the appropriate language.

Since automatic language detection analyzes each text chunk separately, a document 
may contain arbitrary mixtures of languages. Each segment will be assigned the corre-
sponding language as follows:

> Automatic script detection splits the text in chunks consisting of the same script.
> If the script does not uniquely identify the language, automatic language detection 

is used to analyze the text. This process assigns the most likely language for the 
whole chunk, but will not further split the chunk into smaller chunks for each lan-
guage. For example, a chunk with Latin text in the English, German, and French lan-
guages will be assigned one of these languages for the whole chunk, depending on 
the actual distribution of the languages.

Manual language assignment. Automatic language detection in TET PDF IFilter can be 
customized for special applications. This configuration feature makes use of LCIDs (Lo-
cale Identifiers). LCIDs specify the natural language and can also distinguish between 
different national or regional language variants (e.g. UK English vs. US English). Table 4.1 
lists some commonly used LCID values. A complete list of LCIDs can be found at

msdn.microsoft.com/en-us/library/ms776294(VS.85).aspx 

http://msdn.microsoft.com/en-us/library/ms776294(VS.85).aspx


4.3  Automatic Language Detection 53

Note TET PDF IFilter does not apply any language-specific processing beyond language detection. It 
is up to the IFilter client to use the LCID information. While some IFilter clients (e.g. SharePoint, 
SQL Server) include sophisticated LCID treatment, other IFilter clients may completely ignore 
the LCID information.

XML configuration for LCIDs. LCIDs for overriding or supplementing automatic LCID 
detection can be specified in the LocaleId element of the XML configuration file:

<LocaleId default="1031" detection="auto" latin="1031" cyrillic="1026" chinese="4100"/>

The detection attribute can have the values auto, disabled, and script. All other attributes 
except default will be ignored if detection=disabled. Default is auto. The script setting acti-
vates script analysis, but disables statistical analysis.

The default attribute can be used to specify a global LCID setting which will be used 
for all text if detection=disabled. If this attribute is missing, the system locale will be 
used.

For all attributes except detection a numeric value in decimal or hexadecimal syntax 
can be specified. Hexadecimal values must start with 0x. Table 4.2 lists the supported 
script attributes and their default values. LCIDs for text in all other scripts will be as-
signed automatically.

Table 4.1 Common LCID values and the corresponding primary and secondary language

LCID primary language secondary language (country)

0x0000 Neutral locale language Neutral sublanguage

0x0401 Arabic (ar) Saudi Arabia (SA)

0x0404 Chinese (zh) Traditional (Hant)

0x0407 German (de) Germany (DE)

0x0409 English (en) United States (US)

0x040c French (fr) France (FR)

0x0410 Italian (it) Italy (IT)

0x0411 Japanese (ja) Japan (JP)

0x0413 Dutch (nl) Netherlands (NL)

0x0419 Russian (ru) Russia (RU)

0x0804 Chinese (zh) Simplified (Hans)

0x0c0a Spanish (es) Spain (ES)

0x0800 System default locale language

0x1000 Unspecified custom locale language Unspecified custom sublanguage



54 Chapter 4:  Advanced PDF Indexing

Table 4.2 Attributes for specifying script-specific locale IDs (LCIDs)

attribute default value

default 0x0800 Current system locale (will be used for all text chunks if detection=disabled)

latin 0x0409 English (US)

cyrillic 0x0419 Russian (RU)

arabic 0x0401 Arabic (SA)

chinese 0x0804 Chinese (People’s Republic of China)



4.4  Unicode Postprocessing 55

4.4 Unicode Postprocessing
The TET kernel which implements the underlying PDF text extraction engine for 
TET PDF IFilter provides extensive controls for Unicode postprocessing. These are dis-
cussed in detail in the TET manual which is included in the TET PDF IFilter package. Be-
low we mention the most important features.

Unicode postprocessing features are controlled by TET document options. In 
TET PDF IFilter these options can be provided in the DocOptions element of the XML con-
figuration file, e.g.

<Tet>
<DocOptions>decompose={canonical=_all}</DocOptions>
<PageOptions/>
<TetOptions/>

</Tet>

Unicode Folding. Foldings process one or more Unicode characters and apply a certain 
action on each of the characters. The following actions are available:

> preserve the character;
> remove the character;
> replace it with a another (fixed) character.

Foldings are not chained: the output of a folding will not be processed again by the 
available foldings. Foldings affect only the Unicode text output, but not the set of 
glyphs reported in the TET_char_info structure or the <Glyph> elements in TETML. For ex-
ample, if a folding removes certain Unicode characters, the corresponding glyphs which 
created the initial characters will still be reported.

The following option list specifies multiple foldings:

<Tet>
<DocOptions>fold={ {[:blank:] U+0020 } {_dehyphenation remove} }</DocOptions>

</Tet>

Folding examples can be found in the TET manual. The TET manual also documents the 
default foldings which are applied by TET PDF IFilter.

Unicode Decomposition. Decompositions replace a character with an equivalent se-
quence of one or more other characters.1 A Unicode character is called (either compati-
bility or canonical) equivalent to another character or a sequence of characters if they 
actually mean the same, but for historical reasons (mostly related to round tripping 
with legacy encodings) are encoded separately in Unicode. Decompositions destroy in-
formation. This is useful if you are not interested in the difference between the original 
character and its equivalent. If you are interested in the difference, however, the respec-
tive decomposition should not be applied.

Note The term »decomposition« is used here as defined in the Unicode standard, although many de-
compositions do not actually split a character into multiple parts, but convert a single charac-
ter to another character.

1. For a full discussion of Unicode decomposition see www.unicode.org/versions/Unicode8.0.0/ch02.pdf (section 2.12) and 
www.unicode.org/versions/Unicode8.0.0/ch03.pdf (section 3.7).

http://www.unicode.org/versions/Unicode8.0.0/ch02.pdf
http://www.unicode.org/versions/Unicode8.0.0/ch03.pdf


56 Chapter 4:  Advanced PDF Indexing

Canonical decomposition. Characters or character sequences which are canonically 
equivalent represent the same abstract character and should therefore always have the 
same appearance and behavior. Common examples include precomposed characters 

(e.g. ) vs. combining sequences (e.g. ): both representations are canoni-

cally equivalent. Switching from one representation to the other does not remove infor-
mation. Canonical decompositions replace one representation with another which is 
considered the canonical representation.

In the Unicode code charts (see www.unicode.org/charts/)  (but not the character ta-

bles) canonical mappings are marked with the symbol IDENTICAL TO . The decom-

position name <canonical> is implicitly assumed.
The following document option maps all canonical equivalents to their equivalent 

counterparts:

<Tet>
<DocOptions>decompose={canonical=_all}</DocOptions>

</Tet>

Compatibility decomposition. Characters which are compatibility equivalent repre-
sent the same abstract character, but may differ in appearance or behavior. Examples 

include isolated forms of Arabic characters (e.g. ) vs. context-specific shaped forms 

(e.g. , , ). Compatibility equivalent characters differ in formatting. Re-

moving this formatting information implies loss of information, but may simplify pro-
cessing for certain types of applications (e.g. searching). Compatibility decompositions 
remove the formatting information.

In the Unicode code charts compatibility mappings are marked with the symbol 

ALMOST EQUAL TO , followed by the decomposition name (or »tag«) in angle 

Table 4.3 Canonical decomposition: suboption for the decompose option (canonically equivalent characters are 

marked with the symbol IDENTICAL TO  in the Unicode code charts)

decomposition 
name description

before 
decomposition after decomposition

canonical1

1. By default this decomposition is not applied to all characters in order to preserve certain characters; see the TET manual for
details.

Canonical decomposition

U+00C4 U+0041 U+0308

U+00C4U+2261

U+00C4U+2261

U+00C0

U+F9F4

U+2126

U+3070

U+FB2F

U+0041 U+0300

U+6797

U+03A9

U+2126U+306F U+2126U+306FU+3099

U+05D0 U+05B8

U+0633

U+FEB2 U+FEB4 U+FEB3

U+00C4U+2248

http://www.unicode.org/charts/


4.4  Unicode Postprocessing 57

brackets, e.g. <noBreak>. If no tag name is provided, <compat> is assumed. The tag names 
are used as option names in the decompose option list. As can be seen in some of the ex-
amples, the result of a decomposition may convert a single character to a sequence of 
multiple characters.

Note Keep in mind that PDF documents may already map glyphs to the decomposed sequence in-
stead of the non-decomposed Unicode value. In this situation the decompose option will not af-
fect the output.

Decomposition examples can be found in the TET manual. The decomposition names in 
the decompose option list (e.g. font, circle, initial, vertical) and the default decompositions 
are also listed in the TET manual.

Unicode Normalization. The Unicode standard defines four normalization forms 
which are based on the notions of canonical equivalence and compatibility equiva-
lence.1 All normalization forms put combining marks in a specific order and apply de-
composition and composition in different ways:

> Normalization Form C (NFC) applies canonical decomposition followed by canonical 

composition. For example, the composed form C stores Ä as a single character . 

NFC is the preferred format for Unicode text in Windows, on the Web and in most da-
tabases.

> Normalization Form D (NFD) applies canonical decomposition. For example, the de-

composed form D stores Ä as a sequence  of base character and combining 

diacritical character.
> Normalization Form KC (NFKC) applies compatibility decomposition followed by ca-

nonical composition. In other words, some characters are mapped to compatible ba-

sic forms, e.g. the ligature  is mapped to the sequence .

> Normalization Form KD (NFKD) applies compatibility decomposition. This is similar 
to form KC, but does not apply canonical composition.

The choice of normalization form depends on the application’s requirements.
The normalization forms are specified in Unicode Standard Annex #15 »Unicode 

Normalization Forms« (see www.unicode.org/versions/Unicode5.2.0/ch03.pdf#G21796 and 
www.unicode.org/reports/tr15/).

TET PDF IFilter supports all four Unicode normalization forms. Unicode normaliza-
tion can be controlled via the normalize document option, e.g.

<Tet>
<DocOptions>normalize=nfc</DocOptions>

</Tet>

TET PDF IFilter does not apply normalization by default. Because of the possible interac-
tion between the decompose and normalize options, setting the normalize option to a val-
ue different from none disables the default decompositions.

1. The normalization forms are specified in Unicode Standard Annex #15 »Unicode Normalization Forms« (see 
www.unicode.org/versions/Unicode8.0.0/ch03.pdf#G21796 and www.unicode.org/reports/tr15/).

U+00C4

U+0041 U+0308

U+FB01 U+0066 U+0069



58 Chapter 4:  Advanced PDF Indexing

4.5 Custom Glyph Mapping Tables
Although many workarounds are implemented in TET PDF IFilter, in certain rare cases it 
may be unable to correctly extract text from PDF documents if crucial information for 
Unicode mapping is missing from the document. If you have many documents with 
similar properties (e.g. created with the same software and set of fonts) you can provide 
auxiliary Unicode mapping tables which can be used to extract text from PDF docu-
ments which otherwise could not be indexed.

TET PDF IFilter supports various table formats which are detailed in the documenta-
tion of the PDFlib TET product. You can also use the free PDFlib FontReporter and 
PDFlib TET Plugins for Adobe Acrobat to try such mapping tables. Unicode mapping ta-
bles must be configured with appropriate document options in the configuration file, 
and can be placed in the resource directory of the TET PDF IFilter installation directory.

XML configuration for TET options. Option lists for controlling operation of the TET 
core (e.g. for using custom glyph mapping tables) must be constructed according to the 
option list syntax described in the TET product documentation, and can be supplied to 
TET PDF IFilter in the DocOptions, PageOptions, and TetOptions elements of the XML con-
figuration file, which are all children of the Tet element:

<Tet>
<DocOptions>glyphmapping {{fontname=T* glyphlist={tex}}}</DocOptions>
<PageOptions/>
<TetOptions>searchpath={C:/glyphlists}</TetOptions>

</Tet>



5.1  Working with Configuration Files 59

5 XML Configuration File

5.1 Working with Configuration Files
Operation of TET PDF IFilter can be controlled with an XML configuration file. Sample 
configuration files are installed with TET PDF IFilter. Several predefined configuration 
files are installed with TET PDF IFilter:

> The file default_config.xml describes the internal default settings of TET PDF IFilter. It 
may serve as a starting point for a customized configuration file.

> The file starter_samples.xml contains property definitions which can be used with the 
property samples discussed in Section 2.6, »Examples with Custom Properties«, page 
27.

> Additional XML configuration files are available for use with Windows Search, Share-
Point, or SQL Server. One of these configuration files can be registered upon user re-
quest during the installation process.

Specifying the location of the XML configuration file. The configuration file must be 
specified in the following registry key which contains a String value with the full path 
name of the configuration file:

HKEY_LOCAL_MACHINE\SOFTWARE\PDFlib\TET PDF IFilter5\configfile

Note It is recommended to place customized XML configuration files outside the installation directo-
ry of TET PDF IFilter. This way the configuration survives if the installation directory changes, 
e.g. after installing an updated version of TET PDF IFilter.

If this registry entry does not exist or contains an empty string, the default configura-
tion is used. If the configuration file specified in the registry entry cannot be opened or 
XML parsing of the configuration file fails, an error message is written to the event log 
and no indexing is performed.

Only a single configuration file can be used for TET PDF IFilter on a machine. How-
ever, the 32-bit and 64-bit versions can use different configuration files on the same ma-
chine since the registry entry is searched in the 32-bit or 64-bit registry, respectively.

If you changed the configuration file you must rebuild the index for the changes to 
become active.

XML namespace and schema description. Table 5.1 lists the elements and attributes 
which are available in the XML configuration file. An XSD schema description for the 
XML configuration language is installed with TET PDF IFilter, and can also be found at 
the URI given in the schema file. You can use the schema file with a suitable XML editor 
to make sure that the generated XML configuration file adheres to the syntax expected 
by TET PDF IFilter.

Custom data types for XML elements and attributes. Except where a value description 
is provided, all elements are empty. The following custom data types are used in the 
XML configuration file:

> LCID: hexadecimal or decimal locale identifier; see

msdn.microsoft.com/en-us/library/ms776294(VS.85).aspx 

http://msdn.microsoft.com/en-us/library/ms776294(VS.85).aspx


60 Chapter 5:  XML Configuration File

The value 0x0800 is translated to the current system default locale.
> GUID (Globally Unique IDentifier), also known as UUID (Universally Unique IDentifier): 

unique 128-bit identifier in case-insensitive hexadecimal notation according to RFC 
4122. The parts must be separated by dash characters »-«. There are various tools 
available for creating GUIDs, e.g. the online service at

www.uuidgenerator.net/

A sample GUID looks as follows: 7a737220-0cd0-11dd-bd75-0002a5d5c51b.
> pCOS path: extended pCOS path describing a PDF object, see pCOS Reference and the 

pCOS extensions described in Section »Extended pCOS paths«, page 19
> Option list: string containing an option list according to the syntax specified in the 

PDFlib TET Reference Manual.
> Language identifier: XMP language qualifier according to RFC 1766, or x-default which 

identifies the default language in the document.

https://www.uuidgenerator.net/


5.2  XML Elements and Attributes 61

5.2 XML Elements and Attributes
Table 5.1 contains details for the elements and attributes of the XML configuration file. 
More detailed information on the effects controlled by the XML configuration file can 
be found in the respective sections of this manual. The required and recommended set-
tings for specific IFilter clients are listed in the client-specific sections in Chapter 2, »In-
dexing Metadata Properties«, page 19.

Fig. 5.1
Element hierarchy for the XML configuration. Optional elements are
enclosed with dashed boxes; elements in stroked boxes are required.



62 Chapter 5:  XML Configuration File

Table 5.1 XML elements and attributes in the configuration file

element description of the element and its attributes

DocOptions
parent: Tet

(May appear zero or one time) Option list for the TET function TET_open_document( ).

Filtering
parent:
TetPdfIFilterConfig

(May appear zero or one time) Specify details of the PDF filtering process. Supported attributes:
errorIndicator

(String; optional) String which is supplied to the IFilter client if a TET function call 
failed while processing a document. Details regarding the problem may be found in 
the Windows event log (see »Application event log«, page 71). The error indicator can 
be useful to identify indexing problems. It is emitted in addition to any (partial) text 
which may be retrieved from the document. It is recommended to supply a unique 
string without punctuation characters to make sure that the error indicator doesn't 
interfere with real index entries, e.g. TETPDFIFILTERERROR. Default: no error indicator

indexAnnotations
(Boolean; optional; TET PDF IFilter 5.1) Indicates whether annotations (both 
appearance streams and Contents entries) are indexed. Default: true

indexBookmarks
(Boolean; optional; TET PDF IFilter 5.1) Indicates whether bookmarks are indexed. 
Default: true

indexExtendedFormFields
(Boolean; optional; TET PDF IFilter 5.1) Indicates whether the following aspects of form 
field are indexed: field name, default value, tooltip, item list of menu fields. Default: 
false

indexFormFields
(Boolean; optional; TET PDF IFilter 5.1) Indicates whether form field values (i.e. the 
contents of form fields) are indexed. Default: true

indexNestedPdf
(Boolean; optional) Indicates whether PDF portfolios and attachments are processed 
recursively (see Section 4.2, »PDF Document Domains«, page 47). Default: true

indexPageContents
(Boolean; optional) Indicates whether the contents of PDF pages are indexed. Dis-
abling page content indexing may be useful in situations where the search is 
completely based on metadata properties. Default: true

metadataHandling
(Choice; optional) Select the type of metadata handling (see Section 2.7, »Index 
Properties as Text«, page 32). Default: property
ignore Drop all metadata properties. This may be useful for debugging or perfor-

mance optimization in situations where metadata is not required.
property Treat metadata as properties.
propertyAndPrefixedText

In addition to treating metadata as properties, prepend the prefix speci-
fied in textIndexPrefix (if present) for custom properties and the prefix-
es according to Table 2.2, page 32, for predefined properties, and addition-
ally treat the result as plain text.

propertyAndText
In addition to treating metadata as properties, treat metadata as plain 
text.

useIdentifier
(Boolean; optional) Specify whether identifier or friendlyName are used to identify 
properties if both of these attributes for the Property element are present. Default: 
true



5.2  XML Elements and Attributes 63

LocaleId
parent: Filtering

(May appear zero or one time) Configure locale ID detection (see Section 4.3, »Automatic 
Language Detection«, page 52). Supported attributes:
arabic (LCID; optional) LCID for Arabic text. Default: 0x0401 Arabic (SA)
chinese (LCID; optional) LCID for Chinese text. Default: 0x0804 Chinese (People's Republic of 

China)
cyrillic (LCID; optional) LCID for Cyrillic text. Default: 0x0419 Russian (RU)
default (LCID; optional) Global LCID which will be used for all text chunks if detection is 

disabled. Default: 0x0800 (system-locale)
detection (Choice; optional) Control automatic LCID detection. Default: auto

auto Determine LCID based on script and statistical language analysis.
disabled Disable LCID detection; all other attributes except default and use-

CatalogLang will be ignored.
script Determine LCID based on script.

latin (LCID; optional) LCID for Latin text. Default: 0x0409 English (US)
useCatalogLang

(Boolean; optional) Specify whether the Lang entry in the document’s catalog will be 
evaluated. If true, TET PDF IFilter checks the Lang entry in the PDF document catalog. 
If present, the Lang entry will be converted to an LCID. If the conversion is successful 
the LCID overrides the value of the LocaleId/@default attribute; if the LCID belongs 
to one of the Arabic, Chinese, Cyrillic, or Latin scripts it overrides the value of the 
corresponding attribute of the LocaleId element. Default: true

Metadata
parent:
TetPdfIFilterConfig

(May appear zero or one time) Specify metadata properties (see Section 2.5, »Custom Properties«, 
page 24). If present, this element must appear after Filtering and Tet.

PageOptions
parent: Tet

(May appear zero or one time) Option list for the TET function TET_open_page( ).

PrefixDeclaration
parent:
PrefixDeclarations

(May appear zero or more times) Declare a namespace prefix which can be used in Source/
@xmpName. Supported attributes:
prefix (String which does not contain colon »:« characters; required) Prefix to be used as an 

abbreviation for the namespace URI.
uri (URI; required) Namespace URI

PrefixDeclarations
parent: Metadata

(May appear zero or one time) Declare namespace prefixes for XMP properties in xmpName attri-
butes of the Source element.

Table 5.1 XML elements and attributes in the configuration file

element description of the element and its attributes



64 Chapter 5:  XML Configuration File

Property
parent: PropertySet

(May appear one or more times) Specify a metadata property for indexing (see Section 2.5, 
»Custom Properties«, page 24).
At least one of identifier and friendlyName must be present. If both are supplied, identifier 
will be used in the IFilter interface unless Filtering/@useIdentifier=false.
Supported attributes:
identifier (Integer >=2; optional) Number which uniquely identifies the property in a Property-

Set.
emitAsVector

(Boolean; optional) If true, the property value is emitted as a single vector entity, 
regardless of the number of values.
If false, the property is emitted as a flat value. If more than one source item was 
found, multiple flat properties are emitted. Default: false

friendlyName
(String; optional) Name which uniquely identifies the property in a PropertySet. It 
can be used to document the property or as an alternative to identifier. While TET 
PDF IFilter does not limit the length of property names, Windows imposes a 
maximum length of 64 characters.

precedence
(Choice; optional) Specifies precedence for multiple Source elements (default: first-
wins):
first-wins The first non-empty source will be used.
try-all All non-empty sources contribute to the property.

suppressValue
(String; optional; TET PDF IFilter 5.1) If the specified source (single source for 
precedence="first-wins", or all non-empty sources for precedence="try-all") 
delivers the value supplied in this attribute the value is assumed to be non-existent. 
For properties with type="DateTime" the value must be supplied in PDF syntax, e.g. 
suppressValue="D:20170116130311+01'00'".

textIndexPrefix
(String; optional) String to be prepended to the property value if Filtering/
@metadataHandling is propertyAndPrefixedText. Default: empty

type (Choice; optional) Windows data type of the metadata property. Supported choices 
are Boolean, DateTime, Double, Int32, and String. Default: String

PropertySet
parent: Metadata

(May appear zero or more times) Specify filtering of a custom set of properties with the same 
GUID (see Section 2.5, »Custom Properties«, page 24).
If present, this element must appear after PropertySetCollection and PrefixDeclarations.
Supported attributes:
guid (GUID; required) Unique 128-bit identifier for the property set in hexadecimal 

notation (see »Custom data types for XML elements and attributes«, page 59).

PropertySet-
Collection
parent: Metadata

(May appear zero or one time) Specify filtering of predefined property set collections (see Section 
2.3, »Predefined Properties«, page 22). A list of properties can be found in Appendix A, »Predefined 
Metadata Properties«. Supported attributes:
documentXmp

(Boolean; required) Emit document XMP properties. Default: false
imageXmp (Boolean; required) Emit image XMP properties. Default: false
internal (Boolean; required) Emit internal properties of TET PDF IFilter. Default: true
pdf (Boolean; required) Emit PDF-specific properties. Default: true
shell (Boolean; required) Emit shell properties. Default: true

Table 5.1 XML elements and attributes in the configuration file

element description of the element and its attributes



5.2  XML Elements and Attributes 65

Source
parent: Property

(May appear one or more times) Specify one or more sources for a metadata property.
The ordering of elements is relevant if Property/@precedence has the value first-wins. At least 
one of the attributes pdfObject and xmpName must be provided.
Supported attributes:
pdfObject (pCOS path; optional) Extended pCOS path for one or more PDF objects of type 

Boolean, number, name or string containing the property. Default: /Root/Metadata 
(i.e. document-level XMP)

suppressValue
(String; optional; TET PDF IFilter 5.1) If the specified source delivers the value supplied 
in this attribute the value is assumed to be non-existent.

xmpName (String consisting of the schema’s prefix, a colon »:«, and the property name; optional) 
Fully qualified XMP property name. A prefix can be used instead of the namespace 
URI provided it has been declared in a PrefixDeclaration element. This attribute is 
only used if pdfobject is absent or points to one or more XMP streams. Default: 
empty

Tet
parent:
TetPdfIFilterConfig

(May appear zero or one time) Specify processing options for the TET kernel; refer to the TET man-
ual for a description of the option list syntax and available options. Some options will be overrid-
den by TET PDF IFilter.

TetOptions
parent: Tet

(May appear zero or one time) Option list for the TET function TET_set_option( ).

TetPdfIFilterConfig
parent: (none)

(Must appear exactly once as root element) Root element of the XML configuration file. Support-
ed attribute:
version (String; optional) Specify the version of TET PDF IFilter for which this configuration 

was written. New configurations should include this attribute with the appropriate 
version identifier (5.3 for TET PDF IFilter 5.3).

XmpLang
parent:
XmpLangSelector

(Must appear exactly once if XmpLangSelector/@languages=subset) Specify the language of an 
XMP property. Supported attribute:
lang (Language identifier; required). Name of the language; currently x-default is the 

only supported value.

XmpLangSelector
parent: Xmp

(May appear zero or one time) Select a language variant of an XMP property for indexing. This is 
only relevant for properties with an XMP source of type Lang Alt. Supported attribute:
languages (Choice) Specify language-specific indexing of the property (default: all):

all All available language entries of the property will be indexed.
subset Only the languages specified in the XmpLang element will be indexed.

Table 5.1 XML elements and attributes in the configuration file

element description of the element and its attributes



66 Chapter 5:  XML Configuration File

5.3 Sample Configuration File
The following listing shows a complete XML configuration file for TET PDF IFilter:

<?xml version="1.0" encoding="UTF-8"?>

<n:TetPdfIFilterConfig
xmlns:n="http://www.pdflib.com/XML/TET_PDF_IFilter3/TET_PDF_IFilter_Config-3.0.xsd" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.pdflib.com/XML/TET_PDF_IFilter3/TET_PDF_IFilter_

Config-3.0.xsd http://www.pdflib.com/XML/TET_PDF_IFilter3/TET_PDF_IFilter_Config-3.0.xsd"
version="5.5">

<n:Tet>
<n:TetOptions></n:TetOptions>
<n:DocOptions></n:DocOptions>
<n:PageOptions></n:PageOptions>

</n:Tet>

<n:Filtering
indexAnnotations="true"
indexBookmarks="true"
indexExtendedFormFields="false"
indexFormFields="true"
indexNestedPdf="true"
metadataHandling="property"
useIdentifier="true">

<n:LocaleId
detection="auto"
useCatalogLang="true"
default="0x0800"
arabic="0x0401"
chinese="0x0804"
cyrillic="0x0419"
latin="0x0409"/>

</n:Filtering>

<n:Metadata>
<n:PropertySetCollection

documentXmp="false"
imageXmp="false"
internal="true"
pdf="true"
shell="true"/>

<n:PropertySet guid="E544AFE6-13E2-40F1-A702-DCEBE8FB7B03">
<n:Property identifier="20">

<n:Source pdfObject="/Info/Producer"/>
</n:Property>

</n:PropertySet>
</n:Metadata>

</n:TetPdfIFilterConfig>



6.1  TET PDF IFilter does not work at all 67

6 Troubleshooting

6.1 TET PDF IFilter does not work at all
If TET PDF IFilter does not seem to work at all check the items below.

Is TET PDF IFilter correctly registered? You can use the command line tool FiltReg.exe to 
check the correct registration of TET PDF IFilter. The program lists all file extensions 
that have IFilters associated with them by printing the file extension and the name of 
the associated IFilter DLL. The FiltReg.exe program is installed with Microsoft Visual Stu-
dio. For more information see

msdn.microsoft.com/en-us/library/ms692537(VS.85).aspx 

Note For testing the 64-bit edition of TET PDF IFilter the 64-bit version of FiltReg.exe is required. To 
get the 64-bit version it is necessary to install the Windows SDK on a 64-bit machine; other-
wise the 64-bit tools are not installed.

If TET PDF IFilter is correctly registered, the output of FiltReg.exe includes lines similar to 
the following:

Filters loaded by extension:
...
.pdf --> PDFlib TET PDF IFilter 64-bit (C:\Program Files\PDFlib\TET PDF IFilter 5.5 
64-bit\bin\TETPDFIFilter.dll)

If TET PDF IFilter is not correctly registered you must register it manually (see Section 
»Manual installation«, page 6).

If you have Windows Search installed, you can test proper IFilter registration as fol-
lows: click Start, Control Panel, Indexing Options, Advanced, File Types. This will produce a 
long list of file types and associated filters. In this list, scroll to pdf in the Extension col-
umn. The corresponding entry in the Filter Description column should read PDFlib TET PDF 
IFilter 32-bit (or 64-bit, as appropriate).

TET PDF IFilter and Adobe Acrobat. If you install Adobe Reader or Adobe Acrobat after 
TET PDF IFilter (or run Acrobat’s automatic repair mode), they will overwrite the TET 
PDF IFilter registry entries. You can correct the situation by running the TET PDF IFilter 
installer in repair mode, or by manually registering the TET PDF IFilter DLL according to 
Section »Manual installation«, page 6.

Is the license key available? While TET PDF IFilter can be used without a commercial li-
cense key on Windows 8/10, it requires a license key on Windows Server. If you work on 
a server system and PDF indexing does not seem to work, the license key for TET PDF 
IFilter may be missing. In this case TET PDF IFilter will run in evaluation mode, which 
means it is restricted to small documents.

This situation can be detected by checking the Windows event log (see »Application 
event log«, page 71). In case of a problem with the license key there will be an entry with 
source TET PDF IFilter and category TET Error. Double-click on the line containing the error 
and examine the error message. The following text indicates that a valid license key 
could not be found:

http://msdn.microsoft.com/en-us/library/ms692537(VS.85).aspx


68 Chapter 6:  Troubleshooting

TET API Error in TetIFilter::Init: open_document:
Invalid license key (error number 1986)

If you find this message you must enter the license key in the registry (see Section 
»Manual installation«, page 6).



6.2  Problems with TET PDF IFilter Operation 69

6.2 Problems with TET PDF IFilter Operation
If TET PDF IFilter does not seem to work as expected, the analysis methods discussed be-
low may help.

Locked PDF documents are not indexed. If an application locks a PDF file, TET PDF IFil-
ter cannot index the document. In particular, files are locked as long as they are opened 
in Acrobat. While the IFilter client may retry the locked document later, the index will 
be incomplete until the locked document is released. We therefore recommend to avoid 
viewing PDF documents in Acrobat during indexing.

XML configuration file is not read. In order to use an XML configuration file for TET 
PDF IFilter you must create a suitable registry entry which points to the configuration 
file (see Chapter 5, »XML Configuration File«, page 59). If the XML configuration file can-
not be read or XML parsing fails, an error message is written to the event log (see »Appli-
cation event log«) and no indexing is performed.



70 Chapter 6:  Troubleshooting

6.3 PDF Documents are not completely indexed
SharePoint is subject to limitations which affect indexing of large documents. Since 
these limitations are not well explained in Microsoft documentation the following 
notes collect information based on Microsoft support articles and blogs. These notes are 
not authoritative; if in doubt please contact Microsoft for guidance.

Limitations in SharePoint. SharePoint imposes several limitations on document in-
dexing. You can find more information about fixed and configurable limits in Share-
Point at

technet.microsoft.com/en-us/library/cc262787%28v=office.15%29.aspx (SP 2013)
docs.microsoft.com/en-us/sharepoint/install/software-boundaries-and-limits-0 (SP 2016/2019)

The following SharePoint limitations are imposed upon TET PDF IFilter:
> The maximum file size (MaxDownloadSize) specifies the maximum size of docu-

ments which will be crawled and indexed. The default value for SharePoint is 64 MB.
> SharePoint 2013: The maximum growth factor (MaxGrowFactor) specifies a factor 

with which the MaxDownloadSize value is multiplied to determine the maximum 
amount of text for an indexed document. This factor is necessary because the text 
may be compressed inside the file, as is usually the case for PDF documents (unit: 
none, default: 4).

> The parsed content size specifies how many characters from a document can be in-
dexed. SharePoint has a hard-coded limit of 2 million characters. This limit cannot be 
modified.

Changing maximum file size and growth factor for SharePoint. Apply the following 
command in the SharePoint Management Shell (add -id <GUID of SSA> to the first com-
mand if you have multiple search services):

$ssa = Get-SPEnterpriseSearchServiceApplication
$ssa.SetProperty("MaxDownloadSize", ...new value...)

A similar sequence can be applied to set MaxGrowFactor. You can check the current val-
ues as follows:

$ssa = Get-SPEnterpriseSearchServiceApplication
$ssa.GetProperty("MaxDownloadSize")

https://docs.microsoft.com/en-us/sharepoint/install/software-boundaries-and-limits-0
https://docs.microsoft.com/en-us/sharepoint/install/software-boundaries-and-limits-0
https://technet.microsoft.com/en-us/library/cc262787%28v=office.15%29.aspx


6.4  Debugging Facilities 71

6.4 Debugging Facilities
If the search results don’t match your expectation and you suspect problems with the 
text contents extracted from the indexed documents the debugging tools discussed be-
low may be helpful.

Application event log. TET PDF IFilter creates entries in the Windows event log for var-
ious events. You can check the application event log as follows:

> Windows 8/10: Open the Event Viewer (or the corresponding localized term, e.g. Ereig-
nisprotokolle in German versions of Windows). In the Event Viewer window click on 
Windows Logs, Application.

> TET PDF IFilter events are listed with source TET PDF IFilter. Click on the line contain-
ing the message and examine the detailed message.

Entries in the application event log can be enabled for various classes of events by set-
ting the registry value

HKEY_LOCAL_MACHINE\SOFTWARE\PDFlib\TET PDF IFilter5\logging

or

HKEY_LOCAL_MACHINE\SOFTWARE\PDFlib\TET PDF IFilter5\5.5\logging

to a DWORD value according to Table 6.1. The logging level is set to 1 by default.

Note If writing to the Windows event log fails (e.g. because of permission problems) some emergen-
cy logging information is emitted via the OutputDebugString() facility as fallback. The fallback 
logging output can be viewed with the Sysinternals application Dbgview.exe when the option 
»Capture Global Win32« is turned on in the »Capture« menu. If you need additional diagnosis 
for particular problem documents you can run filtdump.exe and examine the generated entries 
in the Windows event log.

Table 6.1 Logging levels for the Windows event log

level (DWORD) summary logged events

0 fatal errors Fatal problems which prevent TET PDF IFilter operation, e.g. errors in the 
XML configuration file, invalid user-supplied TET option lists and licensing 
problems. No documents can be processed

1 (default) document-specific 
errors

Like level 0, plus: document-specific fatal errors, e.g. out of memory. A sin-
gle document cannot be processed.

2 no text could be 
extracted

Like level 1, plus: documents from which no text could be extracted, e.g. 
not a PDF document, required password missing, completely damaged 
PDF, dynamic XFA form. XMP parsing problems are also reported on this 
level.

3 complete file listing Like level 2, plus: each processed document is reported, regardless of the re-
sult. This is useful to ensure that a particular document has actually been 
passed to TET PDF IFilter.

4 processing details Like level 3, plus XMP metadata parsing errors and additional details 
about document processing which may be useful for debugging and sup-
port.



72 Chapter 6:  Troubleshooting

Check indexing time. TET PDF IFilter stores the processing date and time in a property 
with the canonical name PDFlib.TET.indextime (user interface name indexname). This can 
be used to check whether or when a document has already been processed by TET PDF 
IFilter.

For example, if TET PDF IFilter is configured for use with Windows Search you can 
display the index time property in an Explorer or Search Window via View, Add columns, 
Choose columns, and selecting indextime. Now click View, Details to display the detailed 
file information. The new column contains the indexing time for each PDF file pro-
cessed by TET PDF IFilter. A missing entry in this column indicates that the document 
has not been processed by TET PDF IFilter.

Identify problematic documents. Depending on the IFilter client in use, event log en-
tries may or may not include the names of affected files, and file names may or may not 
be useful. For example, SharePoint downloads the documents via HTTP and creates a 
temporary local copy. In contrast, the crawler used by Windows Search generally pro-
vides the name of the indexed file, but doesn’t do this in special cases, e.g. when unpack-
ing a compressed ZIP archive. The event log therefore does not always contain a useful 
file name. As an aid for identifying the affected PDF document the event log entries cre-
ated by TET PDF IFilter contain the file size in bytes. You can use the search engine itself 
to identify affected documents.

> In Windows Search you can use the following query expression (assuming 12345 is 
the file size in bytes):

System.Size: = 12345

> In SharePoint you can identify failed attempts to filter a file in the SharePoint crawl 
log (Shared Services Administration: SharedServices, Search Settings, Crawl Log). The er-
rors regarding PDF documents listed here correspond to the errors issued by TET PDF 
IFilter in the Windows application event log. By comparing the file size of the files in 
the crawl log with the entries in the event log you can identify problematic docu-
ments.

Also note the Filtering/@errorIndicator configuration attribute which can be used to emit 
an identifying string for problematic documents in the index (see Section 5.2, »XML Ele-
ments and Attributes«, page 61).

Which properties and which text are emitted for a document? In order to see the ex-
act text that TET PDF IFilter extracts from a particular document, the tool FiltDump.exe 
from the Windows SDK can be used. For testing the 64-bit TET PDF IFilter DLL the 64-bit 
version of this tool is required. For more information see

msdn.microsoft.com/en-us/library/ms692535(VS.85).aspx 

With the option -o the output of FiltDump.exe can be redirected to a UTF-16-encoded file. 
This makes it possible to see the exact Unicode text and the detected locale (LCID) for 
the text which is emitted by TET PDF IFilter. Sample invocation:

FiltDump.exe -o udhr_japanese.txt udhr_japanese.pdf

Sample output:

FILE: udhr_japanese.pdf
IFILTER: CLSID == {47A1AF35-C345-475D-AE68-EB07E948BD07}

http://msdn.microsoft.com/en-us/library/ms692535(VS.85).aspx


6.4  Debugging Facilities 73

IFILTER: Using IPersistStream
IFILTER: IFilter->Init returned IFILTER_FLAGS_OLE_PROPERTIES flag

CHUNK: ---------------------------------------------------------------
    Attribute = {007867F0-C59B-43FC-AB1E-8EEE77057254}\4 (PDFlib.TET.indextime)
    idChunk = 3
    BreakType = 2 (Sentence)
    Flags (chunkstate) =  (Value)
    Locale = 1031 (0x407)
    IdChunkSource = 3
    cwcStartSource = 0
    cwcLenSource = 0

VALUE: ---------------------------------------------------------------
Type = 64 (0x40), VT_FILETIME
Value = "2010/06/10:08:28:04.587"

CHUNK: ---------------------------------------------------------------
    Attribute = {B725F130-47EF-101A-A5F1-02608C9EEBAC}\19 (System.Search.Contents)
    idChunk = 11
    BreakType = 2 (Sentence)
    Flags (chunkstate) =  (Text)
    Locale = 9 (0x9)
    IdChunkSource = 11
    cwcStartSource = 0
    cwcLenSource = 0

TEXT: ----------------------------------------------------------------
UDHR – Japanese 

CHUNK: ---------------------------------------------------------------
    Attribute = {B725F130-47EF-101A-A5F1-02608C9EEBAC}\19 (System.Search.Contents)
    idChunk = 12
    BreakType = 2 (Sentence)
    Flags (chunkstate) =  (Text)
    Locale = 17 (0x11)
    IdChunkSource = 12
    cwcStartSource = 0
    cwcLenSource = 0

TEXT: ----------------------------------------------------------------
...text contents of the document...

TET kernel logging. You can enable detailed TET logging in order to analyze the behav-
ior of the TET kernel as driven by TET PDF IFilter. TET logging can be activated as follows:

> By setting suitable TET options in the XML configuration file (make sure to specify 
the file name of the XML configuration file in the registry, see Chapter 5, »XML Con-
figuration File«, page 59):

<Tet>

<TetOptions>logging={filename=C:\debug.log classes={pcos=2}}</TetOptions>

</Tet>

This will create a log file with details about internal calls to TET functions, error mes-
sages, etc. Make sure to use a file name which is writable for the service which calls 



74 Chapter 6:  Troubleshooting

TET PDF IFilter, and keep in mind that TET logging creates lots of output and slows 
down the filtering process.

> By setting an environment variable with PowerShell:

PS C:\> ${env:TET PDF IFILTERLOGGING} = "filename=tetpdfifilter.log 
classes={filesearch=3}"



A  Predefined M
etadata Properties

75

A Predefined Metadata Properties
The predefined properties are known internally to TET PDF IFilter (see Section 2.3, »Predefined Properties«, page 22). The first column in 
each table lists the canonical property name. The second column in Table A.1 lists the display names (user interface names) of Shell prop-
erties which are offered as a column in the Details view of Explorer windows. The display names of other predefined properties can be de-
rived by omitting the PDFlib.TET prefix, e.g. the property PDFlib.TET.pdfa has the display name pdfa.

A.1 Shell Property Set Collection
The Shell property set collection is already known to Windows. Canonical names and display names (without spaces) can be used in que-
ries. To determine non-English display names, e.g. German, see »Canonical property name and localized display name«, page 9).

Table A.1 Predefined properties in the Shell property set collection; these are already known in Windows

canonical property name
English display 
name (label) data type

multi-
valued property set GUID/property ID

source:
XMP property or pCOS path

System.Document.Contributor Contributors String yes F334115E-DA1B-4509-9B3D-119504DC7ABB/100 dc:contributor

System.Document.DateCreated Content created DateTime no F29F85E0-4FF9-1068-AB91-08002B27B3D9/12 xmp:CreateDate,
/Info/CreationDate

System.Document.DateSaved1

1. Some IFilter clients, e.g. Windows Search, override the PDF-based values with file system properties.

Date last saved DateTime no F29F85E0-4FF9-1068-AB91-08002B27B3D9/13 xmp:ModifyDate, /Info/ModDate

System.Document.DocumentID Document ID String no E08805C8-E395-40DF-80D2-54F0D6C43154/100 dc:identifier

System.Document.PageCount Pages Int32 no F29F85E0-4FF9-1068-AB91-08002B27B3D9/14 length:pages

System.Document.Version Version number String no D5CDD502-2E9C-101B-9397-08002B2CF9AE/29 xmpMM:VersionID

System.Search.Contents n/a String yes B725F130-47EF-101A-A5F1-02608C9EEBAC/19 text contents of PDF pages

System.Title Title String no F29F85E0-4FF9-1068-AB91-08002B27B3D9/2 dc:title["x-default"], /Info/Title

System.Subject Subject String no F29F85E0-4FF9-1068-AB91-08002B27B3D9/3 dc:description["x-default"],
/Info/Subject

System.Author Authors String yes F29F85E0-4FF9-1068-AB91-08002B27B3D9/4 dc:creator, pdf:Author,
xmp:Author, /Info/Author

System.DateModified1 Date modified DateTime no B725F130-47EF-101A-A5F1-02608C9EEBAC/14 xmp:ModifyDate, /Info/ModDate

System.Keywords Tags String yes F29F85E0-4FF9-1068-AB91-08002B27B3D9/5 pdf:Keywords, /Info/Keywords

System.MIMEType n/a String no 0B63E350-9CCC-11D0-BCDB-00805FCCCE04/5 application/pdf (fixed value)

System.ApplicationName Program name String no F29F85E0-4FF9-1068-AB91-08002B27B3D9/18 xmp:CreatorTool, /Info/Creator

System.Kind Kind String no 1E3EE840-BC2B-476C-8237-2ACD1A839B22/3 Document (fixed value)



76
Chapter A:  Predefined M

etadata Properties

A.2 PDF Property Set Collection
The properties in this collection are emitted by default. In order to use these properties with Windows Search they must be regis-
tered with the proptool.exe utility (see Section 3.1, »Metadata Properties in Windows Search«, page 35). Property descriptions for this 
collection are available in the file predefined_properties.propdesc.

Table A.2 Predefined properties in the PDF property set collection

canonical property name data type
multi-
valued property set GUID/property ID

source:
XMP property or pCOS path

PDFlib.TET.pdfversion
(PDF version multiplied by 10, e.g. »17«)

String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/2 pdfversion

PDFlib.TET.fullpdfversion
(PDF version multiplied by 100, e.g. »173«)

String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/12 fullpdfversion

PDFlib.TET.pdfa1

1. The value none which is returned by pCOS if the document does not conform to any part of this standard is suppressed.

String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/3 pdfa

PDFlib.TET.pdfe1 String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/13 pdfe

PDFlib.TET.pdfua1 String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/14 pdfua

PDFlib.TET.pdfvt1 String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/15 pdfvt

PDFlib.TET.pdfx1 String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/4 pdfx

PDFlib.TET.font String yes E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/5 fonts[*]/name

PDFlib.TET.producer String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/10 /Info/Producer

PDFlib.TET.trapped String no E544AFE6-13E2-40F1-A702-DCEBE8FB7B02/11 /Info/Trapped



A  Predefined M
etadata Properties

77

A.3 Document XMP Metadata Property Set Collection
The properties in this collection are not emitted by default, but must be enabled with PropertySetCollection/@documentXmp="true" in 
the XML configuration file. In order to use these properties with Windows Search they must be registered with the proptool.exe utili-
ty (see Section 3.1, »Metadata Properties in Windows Search«, page 35). Property descriptions for this collection are available in the 
file predefined_properties.propdesc.

Table A.3 Predefined properties in the document XMP metadata property set collection (from the XMP specification)

canonical property name data type
multi-
valued property set GUID/property ID

source:
XMP property or pCOS path

Dublin Core

PDFlib.TET.dc.contributor String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/2 dc:contributor

PDFlib.TET.dc.coverage String no D92BB3CA-CE2B-4B9B-972A-5BF54B468171/3 dc:coverage

PDFlib.TET.dc.creator String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/4 dc:creator

PDFlib.TET.dc.date DateTime yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/5 dc:date

PDFlib.TET.dc.description String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/6 dc:description

PDFlib.TET.dc.format String no D92BB3CA-CE2B-4B9B-972A-5BF54B468171/7 dc:format

PDFlib.TET.dc.identifier String no D92BB3CA-CE2B-4B9B-972A-5BF54B468171/8 dc:identifier

PDFlib.TET.dc.language String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/9 dc:language

PDFlib.TET.dc.publisher String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/10 dc:publisher

PDFlib.TET.dc.relation String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/11 dc:relation

PDFlib.TET.dc.rights String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/12 dc:rights

PDFlib.TET.dc.source String no D92BB3CA-CE2B-4B9B-972A-5BF54B468171/13 dc:source

PDFlib.TET.dc.subject String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/14 dc:subject

PDFlib.TET.dc.title String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/15 dc:title

PDFlib.TET.dc.type String yes D92BB3CA-CE2B-4B9B-972A-5BF54B468171/16 dc:type

XMP Media Management

PDFlib.TET.xmpMM.DocumentID String no 743CD065-7F47-4b4d-ACF1-F0A09C92EAA9/2 xmpMM:DocumentID

PDFlib.TET.xmpMM.InstanceID String no 743CD065-7F47-4b4d-ACF1-F0A09C92EAA9/3 xmpMM:InstanceID

PDFlib.TET.xmpMM.VersionID String no 743CD065-7F47-4b4d-ACF1-F0A09C92EAA9/4 xmpMM:VersionID

PDFlib.TET.xmpMM.OriginalDocumentID String no 743CD065-7F47-4b4d-ACF1-F0A09C92EAA9/5 xmpMM:OriginalDocumentID

XMP Basic

PDFlib.TET.xmp.Advisory String yes C60E822A-074F-4BD5-9889-6EBD372F2000/2 xmp:Advisory



78
Chapter A:  Predefined M

etadata Properties

PDFlib.TET.xmp.BaseURL String no C60E822A-074F-4BD5-9889-6EBD372F2000/3 xmp:BaseURL

PDFlib.TET.xmp.CreateDate DateTime no C60E822A-074F-4BD5-9889-6EBD372F2000/4 xmp:CreateDate

PDFlib.TET.xmp.CreatorTool String no C60E822A-074F-4BD5-9889-6EBD372F2000/5 xmp:CreatorTool

PDFlib.TET.xmp.Identifier String yes C60E822A-074F-4BD5-9889-6EBD372F2000/6 xmp:Identifier

PDFlib.TET.xmp.Label String no C60E822A-074F-4BD5-9889-6EBD372F2000/7 xmp:Label

PDFlib.TET.xmp.MetadataDate DateTime no C60E822A-074F-4BD5-9889-6EBD372F2000/8 xmp:MetadataDate

PDFlib.TET.xmp.ModifyDate DateTime no C60E822A-074F-4BD5-9889-6EBD372F2000/9 xmp:ModifyDate

PDFlib.TET.xmp.Nickname String no C60E822A-074F-4BD5-9889-6EBD372F2000/10 xmp:Nickname

PDFlib.TET.xmp.Rating Int32 no C60E822A-074F-4BD5-9889-6EBD372F2000/11 xmp:Rating

XMP Rights Management

PDFlib.TET.xmpRights.Certificate String no 0DE7A11C-E2C5-4EFA-8017-BECD888E7EC9/2 xmpRights:Certificate

PDFlib.TET.xmpRights.Marked Boolean no 0DE7A11C-E2C5-4EFA-8017-BECD888E7EC9/3 xmpRights:Marked

PDFlib.TET.xmpRights.Owner String yes 0DE7A11C-E2C5-4EFA-8017-BECD888E7EC9/4 xmpRights:Owner

PDFlib.TET.xmpRights.UsageTerms String yes 0DE7A11C-E2C5-4EFA-8017-BECD888E7EC9/5 xmpRights:UsageTerms

PDFlib.TET.xmpRights.WebStatement String no 0DE7A11C-E2C5-4EFA-8017-BECD888E7EC9/6 xmpRights:WebStatement

XMP Basic Job Ticket

PDFlib.TET.xmpBJ.JobRef String yes EBC983EF-C1CF-45C8-A29E-993543A0ECFB/2 xmpBJ:JobRef

XMP Paged-Text

PDFlib.TET.xmpTPg.NPages Int32 no 7A9EB492-35AB-49FE-B364-A21FC9575C28/2 xmpTPg:NPages

PDFlib.TET.xmpTPg.PlateNames String yes 7A9EB492-35AB-49FE-B364-A21FC9575C28/3 xmpTPg:PlateNames

Adobe PDF

PDFlib.TET.pdf.Keywords1 String no 17EB8447-FC9B-4D4D-81DF-31E9AA770CBF/2 pdf:Keywords

PDFlib.TET.pdf.PDFVersion1 String no 17EB8447-FC9B-4D4D-81DF-31E9AA770CBF/3 pdf:PDFVersion

PDFlib.TET.pdf.Producer1 String no 17EB8447-FC9B-4D4D-81DF-31E9AA770CBF/4 pdf:Producer

1. These XMP properties are rarely used; it is recommended to use the corresponding properties System.Keywords, PDFlib.TET.fullpdfversion and PDFlib.TET.producer instead.

Table A.3 Predefined properties in the document XMP metadata property set collection (from the XMP specification)

canonical property name data type
multi-
valued property set GUID/property ID

source:
XMP property or pCOS path



A  Predefined M
etadata Properties

79

A.4 XMP Image Metadata Property Set Collection
The properties in this collection are not emitted by default, but must be enabled with PropertySetCollection/@imageXmp="true" in the 
XML configuration file. In order to use these properties with Windows Search they must be registered with the proptool.exe utility 
(see Section 3.1, »Metadata Properties in Windows Search«, page 35). Property descriptions for this collection are available in the file 
predefined_properties.propdesc.

Table A.4 Predefined properties in the XMP image metadata property set collection (from the Photoshop schema in the XMP 2005 specification)

canonical property name data type
multi-
valued property set GUID/property ID

source:
XMP property or pCOS path

PDFlib.TET.images.photoshop.AuthorsPosition String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/2 photoshop:AuthorsPosition

PDFlib.TET.images.photoshop.CaptionWriter String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/3 photoshop:CaptionWriter

PDFlib.TET.images.photoshop.Category String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/4 photoshop:Category

PDFlib.TET.images.photoshop.City String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/5 photoshop:City

PDFlib.TET.images.photoshop.Country String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/6 photoshop:Country

PDFlib.TET.images.photoshop.Credit String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/7 photoshop:Credit

PDFlib.TET.images.photoshop.DateCreated DateTime yes C9F08C60-189D-11DD-8441-0002A5D5C51B/8 photoshop:DateCreated

PDFlib.TET.images.photoshop.Headline String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/9 photoshop:Headline

PDFlib.TET.images.photoshop.Instructions String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/10 photoshop:Instructions

PDFlib.TET.images.photoshop.Source String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/11 photoshop:Source

PDFlib.TET.images.photoshop.State String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/12 photoshop:State

PDFlib.TET.images.photoshop.SupplementalCategories String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/13 photoshop:SupplementalCategories

PDFlib.TET.images.photoshop.TransmissionReference String yes C9F08C60-189D-11DD-8441-0002A5D5C51B/14 photoshop:TransmissionReference

PDFlib.TET.images.photoshop.Urgency Int32 yes C9F08C60-189D-11DD-8441-0002A5D5C51B/15 photoshop:Urgency



A  Predefined M
etadata Properties

80

A.5 Internal Property Set Collection
The properties in this collection are emitted by default. In order to use these properties with Windows Search they must be regis-
tered with the proptool.exe utility (see Section 3.1, »Metadata Properties in Windows Search«, page 35). Property descriptions for this 
collection are available in the file predefined_properties.propdesc.

Table A.5 Predefined properties in the internal property set collection

canonical property name data type
multi-
valued property set GUID/property ID

source:
XMP property or pCOS path

PDFlib.TET.version String no 007867F0-C59B-43FC-AB1E-8EEE77057254/2 5.5
(plus possibly a patchlevel number)

PDFlib.TET.indextime DateTime no 007867F0-C59B-43FC-AB1E-8EEE77057254/4 date and time of index run

PDFlib.TET.eval Int32 no 007867F0-C59B-43FC-AB1E-8EEE77057254/5 exception number if IFilter runs in 
evaluation mode



B  Revision History 81

B Revision History

Revision history of this manual

Date Changes
December 30, 2023 > Updates for TET PDF IFilter 5.5 (based on TET 5.5)
December 13, 2022 > Updates for TET PDF IFilter 5.4 (based on TET 5.4)
April 21, 2021 > Updates for TET PDF IFilter 5.3 (based on TET 5.3)
July 18, 2019 > Updates for TET PDF IFilter 5.2 (based on TET 5.2)
December 04, 2018 > Added information about SharePoint 2019
September 04, 2017 > Added information about SharePoint 2016
May 23, 2017 > Updates for TET PDF IFilter 5.1 (based on TET 5.1)
July 28, 2016 > Documented support for SQL Server 2014 and 2016
October 23, 2015 > Updates for TET PDF IFilter 5.0 (based on TET 5.0)
January 27, 2015 > Updates for TET PDF IFilter 4.4 (based on TET 4.4)
May 26, 2014 > Updates for TET PDF IFilter 4.3 (based on TET 4.3)
May 16, 2013 > Updates for TET PDF IFilter 4.2 (based on TET 4.2)
October 22, 2012 > Added section on Exchange Server 2010 (based on TET 4.1p9)
February 13, 2012 > Updates for TET PDF IFilter 4.1 (based on TET 4.1)
September 22, 2010 > Updates for TET PDF IFilter 4.0p2 (based on TET 4.0p2)
July 22, 2010 > Updates for TET PDF IFilter 4.0 (based on TET 4.0)
August 06, 2008 > Updates for Search Server
June 16, 2008 > TET PDF IFilter 3.0 (based on TET 3.0pre2)
June 6, 2008 > TET PDF IFilter 3.0 beta3 (based on TET 3.0pre2)
May 09, 2008 > Initial version for TET PDF IFilter 3.0 beta2 (based on TET 3.0pre1)





  83

A
annotations 49
artifacts in Tagged PDF 50
B
bookmarks 49
C
canonical decomposition 56
comments 49
compatibility decomposition 56
custom properties 24
D
damaged PDF 45
DateTime property type 24
decomposition 55
DocOptions element 62
document info entries 19, 48
E
encrypted PDF 45
evaluation version 5
event log 71
Exchange Server 15
F
file attachments 50
Filtering element 62
FiltReg.exe 67
folding 55
form fields 49
G
GUID (Globally Unique Identifier) 21, 60
H
HRESULT error values 37
I
ignore page contents in favor of metadata 34
image metadata 19
indexing properties as text 32
ISO 32000 45
L
language detection 52
layers 51
license key 5, 67
locale identifier (LCID) 52
LocaleId element 63



84 Chapter :  

logging 71
M
metadata 19

custom properties 24
in SharePoint 39
in Windows Search 35
multivalued properties 26
predefined properties 22
properties as text 32
property identification 21
property set collections 22
single-valued properties 26
SQL Server 44
vector processing for properties 26

Metadata element 63
multivalued properties 26
N
normalization 57
P
packages 50
PageOptions element 63
password-protected PDF 45
PDF versions 45
portfolios 50
predefined properties 22
Prefix Declaration element 63
Prefix Declarations element 63
Property element 64
property set collections 22
property values, suppressing 25
PropertySet element 64
PropertySetCollection element 64
proptool.exe 36
protected PDF 45
R
repair mode for damaged PDF 45
S
SharePoint 14

metadata 39
single-valued properties 26
Source element 65
SQL Server 16



  85

metadata 44
suppressing particular property values 25
T
Tagged PDF 50
Tet element 65
TetOptions element 65
TetPdfIFilterConfig element 65
troubleshooting 67
U
Unicode

decomposition 55
folding 55
normalization 57

Unicode mapping tables 58
UUID (Univerally Unique Identifier) 21, 60
V
vector processing 26
W
Windows Search 7

custom properties 35
metadata 35
predefined properties 35

X
XFA forms 45
XML configuration file 59
XML elements and attributes 61
XMP metadata 19, 49
XmpLang element 65
XmpLangSelector element 65



ABC

PDFlib GmbH
Franziska-Bilek-Weg 9
80339 München, Germany
www.pdflib.com

Licensing contact
sales@pdflib.com

Support
support@pdflib.com (please include your license number)

http://www.pdflib.com
mailto:sales@pdflib.com
mailto:support@pdflib.com

	0 Installing TET PDF IFilter
	1 Getting Started
	1.1 Windows Search
	1.1.1 Configuration
	1.1.1 Interactive Search
	1.1.2 Programmatic Search

	1.2 SharePoint
	1.3 Exchange Server
	1.4 SQL Server

	2 Indexing Metadata Properties
	2.1 Sources of Metadata in PDF
	2.2 Metadata Organization
	2.3 Predefined Properties
	2.4 Examples with Predefined Properties
	2.5 Custom Properties
	2.6 Examples with Custom Properties
	2.7 Index Properties as Text
	2.8 Ignore Page Contents in Favor of Properties

	3 Metadata Properties in IFilter Clients
	3.1 Metadata Properties in Windows Search
	3.1.1 Predefined Properties
	3.1.2 Custom Properties
	3.1.3 Properties in TET PDF IFilter

	3.2 Metadata Properties in SharePoint
	3.3 Metadata Properties in SQL Server

	4 Advanced PDF Indexing
	4.1 PDF Versions and Protected Documents
	4.2 PDF Document Domains
	4.3 Automatic Language Detection
	4.4 Unicode Postprocessing
	4.5 Custom Glyph Mapping Tables

	5 XML Configuration File
	5.1 Working with Configuration Files
	5.2 XML Elements and Attributes
	5.3 Sample Configuration File

	6 Troubleshooting
	6.1 TET PDF IFilter does not work at all
	6.2 Problems with TET PDF IFilter Operation
	6.3 PDF Documents are not completely indexed
	6.4 Debugging Facilities

	A Predefined Metadata Properties
	A.1 Shell Property Set Collection
	A.2 PDF Property Set Collection
	A.3 Document XMP Metadata Property Set Collection
	A.4 XMP Image Metadata Property Set Collection
	A.5 Internal Property Set Collection

	B Revision History



